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Philosophy of Model Selection




TL:DR ’
—

Bayesian model selection: ‘Which model (i.e. prior
distribution over parameters and likelihood function) is most
likely to have generated my data?’

Non-Bayesian model selection: ‘Which model (i.e. function
from inputs to outputs produced by a learning algorithm) is
going to be the most accurate on future data?’

Non-bayesian model selection hasn’t done a great job at
explaining generalization in deep neural networks. Maybe
Bayesian model selection is a better path forward?
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Preliminaries: generalization 5

—

> Given: some function f that maps inputs to outputs

X =Y.

f(z1)

f($2)
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Preliminaries: generalization 5

—

» Want to know: if I find a function f that’s close to f on a
finite sample X,,, y», how close to f will it be on new
inputs?

» Want to minimize the expected error ¢ obtained by f on
the distribution P(X).

Ry(f) = Eppx)[0(f(2), f())] (1)
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Generalization meets model selection 6

—

Problem: you have a set of functions fi,..., f,. You want to
pick the one with the best Ry(f;), but you don’t have access to
P except through samples.
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Generalization meets model selection 6

—

Easy solution: pick the function (~ model) with the best
validation loss!
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Generalization meets model selection 6

—

Easy solution: pick the function (~ model) with the best
validation loss! This has limitations:

» Data-expensive — requires leaving some data out.
» Computationally expensive — requires training the set
of models to completion.

» Doesn’t help us to understand what makes deep neural
networks generalize.
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Generalization meets model selection 6

—

Easy solution: pick the function (~ model) with the best
validation loss! This has limitations:

» Data-expensive — requires leaving some data out.

» Computationally expensive — requires training the set
of models to completion.

» Doesn’t help us to understand what makes deep neural
networks generalize.

» ... and therefore doesn’t give great insights into how to
train even better models later.
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Theories of Generalization 7

—

» Scientific theory = an explanation of a phenomenon that
makes testable predictions.

» Not just a set of predictions (e.g. validation loss).

» Not just an intuitive explanation of known phenomena
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Generalization Bounds 8

—

Can we use high-probability bounds to explain generalization?

‘Model complexity’ term
training loss e e
wpl-6 -~/ C ( f)
Re(f) < R(f) +

(2)

n

Ideally, model complexity term should provide a theory (as
defined in previous slide) for why some models generalize.
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Generalization Bounds 8

—

Problem: most of these bounds are vacuous, and often
increasing the ‘model complexity’ term improves generalization
performance

Spectral norm of trained weights

training loss d [|lw; —w?]2
wpl-d e, [Wil3 > i1 ﬁTngF
Re(f) < R(f) +

n
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Generalization Bounds 8

—

Problem: most of these bounds are vacuous, and often
increasing the ‘model complexity’ term improves generalization

performance
KL between prior and posterior
training loss
wpl-6 N KL(Q||P) + log(n/d
R(pE R KGR o)
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Theory <= practice
generalization in deep neural networks



Old theories of generalization break in NNs 10
ll......---———-

| Zhang et al., 2016.]

Theory Experiment

“If your model can memorize random labels,
we can’t guarantee it won't overfit”

“Interesting! I'll
go check if
neural
networks can
memorize
random labels”

“So... it turns out neural networks can memorize
random labels and they don’t overfit on normal data.”
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Theorists can explain some empirical phenomena 11

—

Theory Experiment

“Networks trained with SGD
generalize pretty well”

“Interesting!
I'll go study
why SGD
might be
doing that”

“SGD is equivalent to adding a gradient
norm penalty under some assumptions,
leading to flatter minima.”
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The state of the world 12
P——

We know lots of properties that (empirically) make a model
generalize better.
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» Flat minima generalize better than sharp minima

» Models which share known geometric properties with the
data-generating distribution generalize well.
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The state of the world 12
P——

We know lots of properties that (empirically) make a model
generalize better.

» Flat minima generalize better than sharp minima

» Models which share known geometric properties with the
data-generating distribution generalize well.

» Smooth functions tend to generalize well.

» Models trained with stochastic optimizers tend to
generalize better.

But we don’t have a unified explanation of generalization and
model selection in deep learning.
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An alternative model selection approach. 13

—

Would ideally like a framework with

» a built-in Occam’s razor
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An alternative model selection approach. 13

—

Would ideally like a framework with
» a built-in Occam’s razor | Macliay, 2003 |
» a means of encoding preferences for properties like
smoothness and symmetry | van der Wilk et al., 2018 |

» a probabilistic framework that includes stochastic
predictors by default. | Germain et al., 2016 |
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Bayesian Inference




Type I and Type II Bayesian Inference 15
—

Bayesian inference can occur on two levels.

» Model fitting (Type I) assumes the data D was
generated by a specific model H; and computes a posterior
belief distribution over parameters w given this data.

» Model selection (Type II) takes a set of models
Hi,...,H,, and computes a posterior belief about how
likely each model is to have generated the data D.
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Marginal Likelihood 16
P——

The marginal likelihood is the quantity P(D|H;) that we need
to compute the posterior over models in Type II inference.

P(DIH;) = / P(DJw)p(w)duw (2)

w
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Prequential Coding Perspective 17

—

We can write log P(D|H) as follows:

log P(D|H) =) "log P(D;|Dey, H) (3)
i=1

Intuitively, the marginal likelihood measures how much
information each successive data point gives about the model.
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The Marginal Likelihood and Cross-Validation 18
P——

This looks superficially like leave-one-out cross-validation.

loglik. of D, (y,) over permutations o

CV(D) = Eses, [10g P(Dy(n)| Do(<n))] (4)

Cross-validation looks only at final data point; the marginal
likelihood looks at all data points.

LOO-CV
——
P(D|H) = P(Dy|H)P(Da| Dy, H)P(Ds| D12, H) ... P(Dy| Dy, H)
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Model Selection vs Model Averaging 19
ll......---———-

Option 1: average over models according to posterior weight.

P(DIH)P(H)

P(HID) = =55 (5)

Option 2: pick the model with the highest likelihood.

o_ . POH)PH)
H* = mﬁxw ~ max P(D|H) (6)
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Bayesian Model Selection and Training Speed




Credits 21

Yarin Gal Mark van
der Wilk

Lisa Schut

[ Lyle et al., 2020; Ru et al., 2021 |
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Marginal Likelihood and Training Speed 22
—
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Marginal Likelihood and Training Speed 22
—

k
> InP(D;|Di, M)

i=1

pe) e e o o e
e [@ [#
01/,3,} 09/0 0‘"/0
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Lower bounding the ML 23
ll......---———-

Observation: Can write (a lower bound on) the log marginal
likelihood as a sum of

log P(D) = Zlog[EP(e\D<i)P(Di|9)]
i=1

n
(by Jensen’s inequality) > ZEP(9|D<i)[ ]
i=1

— L(D) «— — S E ]

UNIVERSITY OF
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Estimation 24

—

We can estimate a lower bound on the marginal likelihood
using samples from the posterior

n

k n k
£D) =31 Sl P(Dley)  £u(D) = logy S P(Dil).
i=1 j=1
(7)

i=1 " j=1
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Posterior Sampling via Gradient Descent 25

—

For linear models and the infinite-width limit of neural
networks, we can get posterior samples using gradient
descent.

= P(wo) = P(w)
P(wx) = P(w|D)

w.. = GradDescent(wp)

wo ~ P(wp)
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Algorithm 26
—

Algorithm 1: Marginal Likelihood Estimation for Linear Models
Input: A dataset D = (z;, ;)™ ;, parameters g, 0a, 0%
Result: An estimate of £(D)
0; < 0o ~ N(po,02); Y+ Y +e~N(0,0%); sumLoss<0;
~ 2
U(D<i,w) + [|Y<i — 07 X<ill3 + F¥10 — boll3;
for D; € D do
— (H,Tzi—yi)"’ .
sumlLoss = sumLoss + By
N

0 < GradientDescent(¢, 6, D<;) ;
end
return sumloss
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What about neural networks?



Laplace Approximations & Prior Work 28
—

Lots of great papers have used the Laplace approximation to
estimate marginal likelihood in neural networks

Figure: MacKay, 2003

Flat loss landscape = higher marginal likelihood.
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A lazier option 29

—

Laplace approximations require performing additional
computation or modifying your training procedure.
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Question: Can we do something that looks like marginal
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computation?
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A lazier option 29

—

Laplace approximations require performing additional
computation or modifying your training procedure.

Question: Can we do something that looks like marginal
likelihood estimation without doing any additional
computation?

Answer: Yes! (Sort of, if you don’t care about theoretical
guarantees and you squint really hard.)
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TSE: Training Speed Estimator 30
—

Recall:

, Sum of log likelihoods

log P(D[H) =Y log P(D;|D;, H) (8)
=1
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TSE: Training Speed Estimator 30
—

Recall:
, Sum of log likelihoods

log P(D|H) =) log P(Di|D<;, H) (8)
=1

Naive application to SGD trajectories:

sum of training losses

TSE = Z Z ¢ (fo,.(X4), y3) (9)

t=1
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Training Speed as a Performance Estimator 31

—

Is the TSE metric useful for non-Bayesian model
selection?

» Want a cheap estimator to tell us whether a network
architecture is good

» ideally, this estimator should work well with early stopping

» and give us a reliable ranking of which architecture will
obtain the best performance after training
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Training Speed as a Performance Estimator 31
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Figure: Rank correlation between final test accuracy and several
performance estimators computed at different points in training.
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Training speed vs validation loss 32

—

The validation loss is an estimator of how much information the
training set has given about the test set so far

D1—D2 D1,2—Ds LOO-CV
P(D|H) = P(D1|H)P(D2|D1,H)P(D3|D12,H) .. .P(Dy|Deyy, H)
The marginal likelihood (and the estimator described

previously) looks iteratively at how updating on one data point
affects the rest of the training set.
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Results in Neural Architecture Search 33

—

Is the TSE metric useful for neural architecture
search?

» High rank correlation doesn’t guarantee good performance
in NAS

» E.g. if the method can’t distinguish between ‘good’ and
‘excellent’ architectures, it might not produce great results.

» This is what we evaluate next.
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Results in Neural Architecture Search

—

B Estimator

Rank Correlation

Average Accuracy of Top 10 Architectures

NB201-CIFAR10 DARTS NB201-CIFARIO DARTS
RandNAS FairNAS MultiPaths  RandNAS RandNAS FairNAS MultiPaths RandNAS
100 TSE 0.70 (0.02)  0.84 (0.01) 0.83(0.01) 0.30(0.04) 92.67 (0.12 92.7(0.1)  92.63(0.12) 93.64(0.04)
Val Acc  0.44 (0.15)  0.56 (0.17)  0.67 (0.05) 0.11(0.04) 91.47(0.31) 91.73(0.21) 91.77(0.78)  93.20(0.04)
200 TSE 0.70 (0.03)  0.850 (0.01) 0.83(0.01) 0.32(0.04) 92.70(0.00) 92.77 (0.06) 92.73 (0.06) 93.55(0.04)
Val Acc  0.41(0.10)  0.56 (0.17)  0.53 (0.11)  0.09(0.02) 91.53(0.55) 92.40(0.10) 92.23 (0.23) 93.34(0.02)
300 TSE 0.71 (0.03)  0.851 (0.00) 0.82(0.01) 0.34(0.04) 92.70 (0.00) 92.77 (0.06) 92.70 (0.00)  93.65(0.04)
Val Ace  0.44 (0.04) 0.62(0.08) 0.59 (0.71) 0.06(0.02) 91.20(0.35) 92.10(0.50) 91.43(0.72) 93.31(0.02)

Substituting training speed for validation accuracy improves
performance in several NAS methods.
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Differentiable Architecture Search 34

(a) (b)

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint
optimization of the mixing probabilities and the network weights by solving a bilevel optimization
problem. (d) Inducing the final architecture from the learned mixing probabilities.




Can you differentiate through training speed? 35
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Using TSE instead of validation loss improves performance in
differentiable NAS methods.




Understanding Training Speed
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Train faster, generalize better? 37

—

Prior work (Hardt et al., 2016) has studied the training
speed-generalization connection:

L linear in number of steps .
€ term to bound generalization error A Non-negative
-

/ to /_/%
E.[f(wr; 2) — f(wp; 2)] < gsupf(w;Z) + LE[67]04, = 0]

High-probability guarantees, but vacuous for long training runs!

SOTL is measuring something different.
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What is SOTL measuring? 38
—

Hypotheses:

» Gradient correlation. If the gradient step for one
minibatch lowers the loss on the rest of the training set,
then the training loss will decrease more quickly than if
updates only affect the minibatch they’re computed on.
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What is SOTL measuring? 38
—

Hypotheses:

» Gradient correlation. If the gradient step for one
minibatch lowers the loss on the rest of the training set,
then the training loss will decrease more quickly than if
updates only affect the minibatch they’re computed on.

» Flatness. In a flat loss landscape, it may be easier to
quickly find a good minimum. In later stages of training,
loss is equal to loss of minimum + parameter noise,
smoother loss surfaces produce less noise.
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Training Speed and Theories of Generalization 39

—

Training speed doesn’t make predictions w.r.t. absolute value of
test set error, but does make predictions on relative
performance of comparable models.

» Gradient correlation view predicts that models which
generalize well to test data will also exhibit good
generalization between disjoint minibatches in the training
data.

> Flatness view predicts that flatter loss landscapes contain
functions that generalize well.
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Limitations 40

—

» Data augmentation
» Dropout N

» Comparisons across "
different network
families

Figure: A slow-and-steady tortoise
vs a hare that plateaus early.
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Understanding training speed 42

—

» What properties is training speed measuring?

» How can we directly incentivize these properties during
training?

» How does this relate to existing approaches in meta- and
continual learning?

» What are other ways that the prequential coding framing
of the marginal likelihood might be useful?
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From model selection to guarantees 43

—

» Type II maximum likelihood answers the question: ‘which
model is most likely to have generated this data?’

» It does not answer: ‘which model will assign the highest
likelihood to the data I'll see in the future?’
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From model selection to guarantees 43

—

» Type II maximum likelihood answers the question: ‘which
model is most likely to have generated this data?’

» It does not answer: ‘which model will assign the highest
likelihood to the data I'll see in the future?’

» It therefore doesn’t directly give worst-case bounds on
performance on future data points.

» How can we bridge the gap between heuristics for model
selection and provable guarantees?
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