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Two Views on Representations

Feature space view

Representation = outputs of a layer of  a 
neural network 

- Usually the penultimate layer in RL
- Useful for contexts  where the 

output of the “representation layer” 
will be used as input to another 
network later.



Two Views on Representations

Update space view

Representation = how a network will 
respond to the data it sees in the future

- How does an update on one data 
point influence predictions on other 
data points?

- What types of target/input 
distributions is the network good at 
fitting?

- Useful for meta-learning or transfer 
learning, where network may  be 
fine-tuned on a new task later.



Part I: Learning Dynamics in RL



Learning Dynamics

We’re interested in studying how 
RL agents’ representations 
evolve over time. 

To do this, we study a 
continuous-time approximation of 
the dynamics followed by TD 
learning.



Learning Dynamics

Warmup: fitting a known tabular value 
function by minimizing the l2 distance to 
the true value function. 



Learning Dynamics

Warmup: fitting a value function using temporal difference 
learning (minimize l2 distance to TD target)



Convergence along eigenspaces of transition matrix

Ui is the eigenspace 
corresponding to the 
i-th largest eigenvalue



Learning dynamics with “linear” function approximation

Value function parameterization:                   where we can learn both the 
features and the weight vector.

Idealized version of what a neural network update is “trying” to do to the 
features (if there were no interference between updates for different inputs).



Ensemble Prediction

Consider a simpler setting: M prediction heads 
that are updated slowly (or even fixed) relative 
to the features.



Ensemble Prediction Convergence

Principal eigenvectors of the 
transition function



Random cumulant prediction

Tends to zero

Doesn’t tend to 
zero



Other auxiliary tasks



What makes a “good” feature set?

EBFs and RSBFs pick up on “structure” 
in the environment. 

But we also care about how well 
features let us predict the value of the 
next policy the agent will follow in the 
value improvement path.

These features seem to be 
better-than-random at generalizing 
under policy improvement!



Part II: Feature Collapse and Sparsity



Motivation

Picking up on environment structure is nice, but not if your representation 
converges to the zero vector!

Previous results suggest that agents in sparse-reward environments may end 
up with features that are zeroed-out.

This makes it hard for the agent to update its policy if it sees a reward later.



How do different auxiliary tasks fare in Atari?



Measuring feature collapse in neural networks

Estimate “numerical rank” of feature embeddings by looking at how many 
non-negligible singular values the matrix of features for n randomly sampled 
states has.

Compute SVD of 
this matrix, count 
nontrivial 
singular values



What’s happening to the agents’ features?
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From feature collapse to capacity loss



Capacity in Feature Space vs Output Space

- Feature rank gives us a sense of how much of the last layer the network is 
using at a given moment

- It doesn’t tell us whether the network could use more of the last layer 
given a sufficiently informative reward signal.

- What if we instead measured how well the network can fit new targets 
starting from its current parameter values?

Capacity of a network N using 
optimization algorithm O on 
data-generating distribution D

MSE after running 
optimizer O on targets 
f starting at 
parameters 

F sampled from some 
pre-defined target distribution 
(e.g. Bellman targets, outputs of 
different random network 
initialization, hash function)



Target-fitting capacity under non-stationary targets

Neural networks tend to get worse at fitting new targets after they’ve been 
made to fit several different target functions.

RL Supervised learning with different target 
function classes on MNIST inputs



Preserving Representation Capacity

Freshly initialized networks are 
really good at fitting lots of 
different types of targets.

Idea: regularize the network so that 
it maintains its ability to fit 
functions it could predict at 
initialization.



Regularization Objective

Auxiliary head 
outputs using online 
parameters

Auxiliary head 
outputs at 
initialization



What effect does this have on networks?



Have we overfit to sparse-reward tasks?



How does InFeR work?

Hypothesis 1: the random subspace 
of features that InFeR preserves is 
useful for value prediction.

Experiment: concatenate a subset of 
the network’s randomly initialized 
features to the penultimate layer 
outputs and let the final linear layer 
use these for prediction.

Result: this doesn’t produce the same 
effect as InFeR on performance. ❌



Conclusions

- TD updates implicitly encourage agents’ representations to pick up on the 
structure of the environment transition function.

- However, they can also lead to feature collapse when the agent doesn’t 
receive any reward signal.

- The non-stationary prediction tasks agents fit over the course of training 
have an adverse effect on their ability to fit future value functions.

- We present a simple approach that mitigates both of these effects, and 
leads to significant performance improvements in sparse-reward 
environments.



Thanks!



How does InFeR work?

Hypothesis 2: InFeR constrains how much 
the network can let its representation 
drift from its initial value. In 
environments where InFeR hurts 
performance, making significant changes to 
the representation is necessary for learning 
progress.

Experiment: increase the width of the 
penultimate layer, preserve the number of 
heads to give the representation more 
degrees of freedom during training. 

Result: this significantly reduces or 
eliminates the performance gap in most 
environments where InFeR hurts 
performance over Rainbow. ✅



InFeR and Numerical Rank



Feature trajectories

The dynamics under this 
parameterization aren’t linear, 
so we can’t construct a general 
closed form for the value 
function in this case. 

Still, empirically the 
eigendecomposition of the 
transition matrix looks like it 
plays an important role!


