Representation Dynamics
and Feature Collapse

Clare Lyle
Representation Learning in RL Workshop
OxCSML

Credits

This talk is based on two papers

On the Effect of Auxiliary Tasks on Representation Dynamics

AISTATS 2021. CL*, Mark Rowland*, Georg Ostrovski, Will Dabney.
[Redacted]

Under review. CL, Mark Rowland, Will Dabney.

http://proceedings.mlr.press/v130/lyle21a.html

Two Views on Representations

Feature space view

Representation = outputs of a layer of a
neural network

- Usually the penultimate layer in RL
- Useful for contexts where the

output of the “representation layer”

will be used as input to another Generic formulation of auxiliary tasks:
network later shared representation ¢ used to make
. many predictions.

Two Views on Representations

Update space view

Representation = how a network will
respond to the data it sees in the future

- How does an update on one data
point influence predictions on other
data points?

- What types of target/input
distributions is the network good at
fitting?

- Useful for meta-learning or transfer
learning, where network may be
fine-tuned on a new task later.

Mean predictions plus 3 st.deviations (RBF parameter [=0.001000)

Part |. Learning Dynamics in RL

Learning Dynamics

We're interested in studying how
RL agents’ representations
evolve over time.

To do this, we study a
continuous-time approximation of
the dynamics followed by TD
learning.

1-step Temporal D|fferences Monte Carlo
X o \
s

§

N

-1+
-1 0 1
V(x1)

Figure 1: An example of qualitatively different value
function dynamics for a two-state MDP for 1-step tem-
poral difference learning and Monte Carlo learning,
with fixed point V™ in red.

Monte Carlo

Learning Dynamics

Warmup: fitting a known tabular value
function by minimizing the 12 distance to
the true value function.

OVy = (I —vP™) " 'R™ -V,

1- step Temporal leferences

Learning Dynamics

Warmup: fitting a value function using temporal difference
learning (minimize |12 distance to TD target)

T™V = R™ + 4PV |/

8,4,‘/,5 — —(I — ’}’Pﬂ-)‘/t + Rﬂ-

V(x2)

Vi = exp(—t(I —vP"))(Vo - V") + V"

Convergence along eigenspaces of transition matrix

Proposition 3.4. Under Assumption 3.3, and (V4)¢>0
the solution to Equation (3), for almost every! initial
condition Vj, we have

d((V; = V"), {U1)) = 0.

Proposition 3.5. Under Assumption 3.3, and
(Vt(k))tzo the solution to Equation (3) for each k =
1,..., K, for almost every initial condition (Vo(k))szl,
we have

1-step Temporal Differences

A

\

V(x1)

V(x2)
IS)

[

To obtain our results,
we quantify distances
between subspaces,
such as the
Grassmann distance.

(V¥ —v™ | k e [K)), (Ulmenspace

corresponding to the
i-th largest eigenvalue

Learning dynamics with “linear” function approximation

Value function parameterization: V = ®w where we can learn both the
features and the weight vector.

|dealized version of what a neural network update is “trying” to do to the
features (if there were no interference between updates for different inputs).

8,5(1),5 — OJ(RW + ’YPW(I)tWt = (I)tWt)W;r
(’9twt — 5(1)2_ (RW an ’)’PW(I)tWt — (I)tWt)

Representation learning model

Ensemble Prediction

Value
prediction

Consider a simpler setting: M prediction heads
that are updated slowly (or even fixed) relative
to the features.

Ensemble
prediction

M
0,0M = Z (RT+~yP"dMwm _dMwm)(wr) "
m=1

Random
cumulant

atW;n :ﬂ((I);ZM)T(R"r + ’YPW(I)%’WW?L — q)thn) prediction

Ensemble Prediction Convergence

Theorem 4.1. F(Of)M €N, let (2{)1>0 be the solu- Corollary 4.2. Under the feature flow (9) with w}"
tion to Equation (9), with each wi* form=1,..., M G LS LA p .
inHilied. Sndspendently From, IV (0,03, and fved fixed at initialization for each ¢ = 1,..., M and As-
throughout training (8 = 0). We consider two set- sumption 3.3, for almost all initialisations ®(, we have
tings: first, where the learning rate « is scaled as % hen R™ = 0
and 0%, = 1 for all M, and second where 0%, = 7; and wie -
the learning rate « is equal to 1. These two settings
yield the following dynamics, respectively: d((@t), <U1K>) -0 : as t — oo.

lim 8,M £ — (I —yP™)®M | and (11)

M —o00

Jim 8,2} L _(I—4P"®M 4+ R™e" | e~ N(0,]).
(12)

The corresponding limiting trajectories for a fixed ini- Key lnSlght *

tialisation ® € R¥*, are therefore given respec- Under the conditions of Theorem 4.1 and Corol-

tively by e
lary 4.2, the ensemble auxiliary tasks cause the
R agent’s representation ® to align with EBFs.
Jim @3 Zexp(—t(I —vP™))(@o — (I —yP™)'R"e")
+ (I —4P™) 'R e~ N(0,1). /
(14) . :
Principal eigenvectors of the
transition function

lim ®M gexp(—t(] —vP™)®, ,and (13)
M—o00

Random cumulant prediction

Theorem 4.3. For fixed M € N, let the random re-
wards (r™)M_, and weights (Ww™)M_, be as defined
above, let @« = 1, and consider the representation dy-
namics in Equation (15), with weights fixed through-
out training (8 = 0). Let ¥ denote the covariance
matrix of the random cumulant distribution. Then

M
lim Z r(w™ " £ Zg ~ N(0,%), and
m=1

M—o00

S & 2[;xp<—t<f —¥P™))(@o — (I — 7P™) "' Z)
(I —~P")"'Zs . Tends to zero

Doesn't tend to
zero

4 Key insight. h
With random cumulant auxiliary tasks, under the
assumptions of Theorem 4.3 and Corollary 4.4,
the distribution of the limiting representation
does not collapse, and is characterized by the RS-
BFs of P™, while the trajectory it follows to reach

\this subspace is determined by the EBFs of P™.)

Other auxiliary tasks

Auxiliary task | Dynamics (r = 0) P (r=0) | D (r#0) Limit of (®; — ®)
Ensemble —(I —yP™)®; 0 (I —yP™) re’ EBFs of P™
Random cumulants | —(I —yP™)®;+ Zx, | [—yP™)"1Zs | (I —yP™)"1Zx EBF's of P™
Additional policies —(I —yP™)®, 0 (I —yP™)"1RTeT EBFs of P~™
Multiple s —(I —yP™)P, 0 (I —5P™)"'R"e’ EBFs of P™

What makes a “good” feature set?

EBFs and RSBFs pick up on “structure”
in the environment.

But we also care about how well
features let us predict the value of the
next policy the agent will follow in the
value improvement path.

o o » N O

Without value function

These features seem to be
better-than-random at generalizing
under policy improvement!

With value function
o) o = N o}

Figure 3: Transfer of EBFs, RSBFs, and RFs across
the value-improvement path of a chain MDP, with and
without the value function as an additional feature.

Part Il: Feature Collapse and Sparsity

Motivation

Picking up on environment structure is nice, but not if your representation
converges to the zero vector!

Previous results suggest that agents in sparse-reward environments may end
up with features that are zeroed-out.

This makes it hard for the agent to update its policy if it sees a reward later.

How do different auxiliary tasks fare in Atari?

ms_pacman seaquest gbert pong pong_sparse montezuma_revenge
5000 35000 =
20000 ' el e 1400
30000 % 4
4000 e ({«J\“ o £200
25000 B AT 104]
A 15000 4 “tio
£ Ly
¢ 3000 20000 Pl . ! 800 1
'y 4 .
3 15000 20000 i 600
2000 10000 —101 400
5000
5000 200
1000
0 o 0 =20 - oA
0.0 05 1.0 1.5 2.0 0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0 00 05 10 15 20
Environment Frames 18 Environment Frames 18 Environment Frames 1€8 Environment Frames 18 Environment Frames 1€8 Environment Frames 1e8
— DDQN+RC -=-- DDQN+REM —-= DDQN+Ensemble ------ QR-DQN --=- DDQN

Measuring feature collapse in neural networks

Estimate “numerical rank” of feature embeddings by looking at how many
non-negligible singular values the matrix of features for n randomly sampled

states has.

Input
Compute SVD of
this matrix, count
nontrivial
singular values

100 x 100

5 X, €) = [{o € SVD(%cﬁ(X)) o> e}

What's happening to the agents’ features?

Numerical rank

montezuma_revenge sparse pong pong seaquest
400 - 400 - 400 400 -
200 - 200 200 200
0+ 01 0
g 600 - 20
o 30000 -
g 10
400
S 0l 20000 -
2 —— RC-DQN
200 -
= —10 —— DDQN 10000 -
£ —— QR-DQN
~ 0 : : : : : ' —201 ‘ : : 0- i : ;
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Millions of frames Millions of frames Millions of frames Millions of frames

From feature collapse to capacity loss

Capacity in Feature Space vs Output Space

- Feature rank gives us a sense of how much of the last layer the network is

using at a given moment
- It doesn't tell us whether the network could use more of the last layer

given a sufficiently informative reward signal.
- What if we instead measured how well the network can fit new targets

starting from its current parameter values?

CN,0,D) =Etpr[Eonpy[(9o(z) — f(2))7]] where 8 = O(6o, Px, f)

MSE after running F sampled from some

Capacity of a network N using optimizer O on targets pre-defined target distribution
optimization algorithm O on f starting at (e.g. Bellman targets, outputs of
data-generating distribution D parameters 6 different random network

initialization, hash function)

MSE on random targets

Target-fitting capacity under non-stationary targets

Neural networks tend to get worse at fitting new targets after they've been

made to fit several different target functions.

1072

103

asteroids o space_invaders
1073 —— DDOQN
—— RC-DQN scale=0.1
—— RC-DQN scale=1.0
50 100 150 200 0 50 100 150 200

Millions of frames

Millions of frames

Supervised learning with different target
function classes on MNIST inputs

MSE on train set

Random Network Outputs

Indicator Function Targets

Number of dataset iterations

—— Deep RelLU
e |- Deep leaky RelLU
—— Shallow ReLU
0.0104 — Shallow leaky ReLU
S 0.0051 \
|
: 0.000 ,
0 2 4 6 8 0 2 4 6 8

Number of dataset iterations

Preserving Representation Capacity

4 L
Freshly initialized networks are TD InFCR
really good at fitting lots of
different types of targets. Qet {gl } {Qz x;6p)}

ldea: regularize the network so that
it maintains its ability to fit
functions it could predict at
initialization.

Regularization Objective

.k _
£InFeR(9> 903 Ba 6) — E:cNB _)2

= =il
Auxiliary head Auxiliary head
outputs using online outputs at

parameters initialization

What effect does this have on networks?

(b) Fitting Random Targets on MNIST (C) Effect of InFeR in Montezuma’s Revenge
- Regression 3 183
0.014 1 -~ Regression+InFeR
0.012
s
@ 0.010 A
® - 2
S 0.008 5 e R
o3 -Iq-; ~NY A /
€ 0.006 < 4 “.r
g h.r"_z./)
0.004 - P
0.002 / ; w
' / ,/-—./ TN — * T A
OOOO T T T T T T T 0 — T T T T
0 1 2 A .. 6 7 8 0 50 100 150 200
arget iteration T
Millions of frames
—— DDQN —-— Rainbow

—— DDQN+InFeR —-— Rainbow+InFeR

B - 9budAl eWINZAIUOW

I PEY LT

=] 1sanbeas

=
=
=
[
i
5]
@
| |
|
I
i
|
I
I
|
|
I
I
|
|
|
|

puewwod Jaddoyd
-umop-u-dn
xiuaoyd
JOM™JO pJiezZIm
- ?9A9 9reAnd
- INJUIA
J13ydob
- 19puajap
- 9budnasTsieA
- 1e}inelb
043y
- J9pli_weaq
- UOXXeZ
-149qgb
- 3padnuad
-uewded sw
-j|jnesse
-noyealq
- JauunJ peou
- Aypoy 31
- weyduein
-|lequid~o3pIA
- S|Je|os
-3oene uowsp
-Jauunbiels
-)jueloqou
- buixoq
- buod
- |1ejud
siuua)
- dweb sIyy sweu
- Aemaauy
- ooJtebuey
-)junp-3|gnop
-1quidAzesn
-04npus
| -J31Sew ny buny
I - Agqiap~bulysy
I -punouns
[1s1vY jueq
I - pleiIdAU
R | L
I -snuepe
I -u3le
1 - 3giIsouy
1 -oidPawn
I - 2uU0Z 39Meq
B - Bus
o
|5
=

Human-Normalized Return on Atari

- SI9peAul adeds
Jepiwe
- Sploiaise
m - puogsawefl
m= - buiymoq
- X119)5e
o o

o
o~

(moquiey SA)
' judwaAoldw| %

Capped Normalized Return
B Human-Normalized Return

400 -

Have we overfit to sparse-reward tasks?

How does InFeR work?

Hypothesis 1: the random subspace
of features that InFeR preserves is phoenix montezuma_revenge berzerk

1le5 le3 led

useful for value prediction. _ 3] "

w

Experiment: concatenate a subset of 2] 2

the network’s randomly initialized y oA I-A

Return

N

features to the penultimate layer B 0 O 1o
. . Millions of frames Millions of frames Millions of frames
OUtpUtS and Iet the ﬂnal llnear |ayer —— Rainbow+RF —— Rainbow —— Rainbow+InFeR

use these for prediction.

Result: this doesn’t produce the same
effect as InFeR on performance. X

Conclusions

- TD updates implicitly encourage agents’ representations to pick up on the
structure of the environment transition function.

- However, they can also lead to feature collapse when the agent doesn'’t
receive any reward signal.

- The non-stationary prediction tasks agents fit over the course of training
have an adverse effect on their ability to fit future value functions.

- We present a simple approach that mitigates both of these effects, and
leads to significant performance improvements in sparse-reward
environments.

Thanks!

How does InFeR work?

Hypothesis 2: InFeR constrains how much
the network can let its representation
drift from its initial value. In
environments where InFeR hurts

. . . - asteroids -~ hero . Jamesbond
performance, making significant changes to : : :
the representation is necessary for learning o 3
progress. i ‘I
05] : N
Experiment: increase the width of the W N WV)
penl_”timate ayer, preserve the number Of Millionsofframes M.iIIionsofframes I\'/Iillionsofframes.
—— DoubleRainbow —— DoubleRainbow+InFeR ~ —— Rainbow —— Rainbow+InFeR

heads to give the representation more
degrees of freedom during training.

Result: this significantly reduces or
eliminates the performance gap in most
environments where InFeR hurts
performance over Rainbow.

INFeR and Numerical Rank

500 1
475 1

500 1

400 -

tutankham

yars_revenge

gy

0

100 200
Millions of frames

up_n_down

500 1

400 1

N

Zaxxon

500 1

450 1

—

0

100 200
Millions of frames

500 1
2501

venture video_pinball
e 500-
2751 T G
0 100 200 0 100 200

Millions of frames Millions of frames

—— Rainbow
—— Rainbow+InFeR

Feature trajectories

The dynamics under this
parameterization aren't linear,
so we can't construct a general
closed form for the value
function in this case.

Still, empirically the
eigendecomposition of the
transition matrix looks like it
plays an important role!

t=9.8
|®] =4.23e — 02

t=39.9
|®] = 1.32e — 05

t=33.2
|| = 7.19e — 05

t=100.0
|®] = 6.90e — 06

A105(P")

