
Representation Dynamics
and Feature Collapse

Clare Lyle
Representation Learning in RL Workshop

OxCSML

Credits

This talk is based on two papers

On the Effect of Auxiliary Tasks on Representation Dynamics

AISTATS 2021. CL*, Mark Rowland*, Georg Ostrovski, Will Dabney.

[Redacted]

Under review. CL, Mark Rowland, Will Dabney.

http://proceedings.mlr.press/v130/lyle21a.html

Two Views on Representations

Feature space view

Representation = outputs of a layer of a
neural network

- Usually the penultimate layer in RL
- Useful for contexts where the

output of the “representation layer”
will be used as input to another
network later.

Two Views on Representations

Update space view

Representation = how a network will
respond to the data it sees in the future

- How does an update on one data
point influence predictions on other
data points?

- What types of target/input
distributions is the network good at
fitting?

- Useful for meta-learning or transfer
learning, where network may be
fine-tuned on a new task later.

Part I: Learning Dynamics in RL

Learning Dynamics

We’re interested in studying how
RL agents’ representations
evolve over time.

To do this, we study a
continuous-time approximation of
the dynamics followed by TD
learning.

Learning Dynamics

Warmup: fitting a known tabular value
function by minimizing the l2 distance to
the true value function.

Learning Dynamics

Warmup: fitting a value function using temporal difference
learning (minimize l2 distance to TD target)

Convergence along eigenspaces of transition matrix

Ui is the eigenspace
corresponding to the
i-th largest eigenvalue

Learning dynamics with “linear” function approximation

Value function parameterization: where we can learn both the
features and the weight vector.

Idealized version of what a neural network update is “trying” to do to the
features (if there were no interference between updates for different inputs).

Ensemble Prediction

Consider a simpler setting: M prediction heads
that are updated slowly (or even fixed) relative
to the features.

Ensemble Prediction Convergence

Principal eigenvectors of the
transition function

Random cumulant prediction

Tends to zero

Doesn’t tend to
zero

Other auxiliary tasks

What makes a “good” feature set?

EBFs and RSBFs pick up on “structure”
in the environment.

But we also care about how well
features let us predict the value of the
next policy the agent will follow in the
value improvement path.

These features seem to be
better-than-random at generalizing
under policy improvement!

Part II: Feature Collapse and Sparsity

Motivation

Picking up on environment structure is nice, but not if your representation
converges to the zero vector!

Previous results suggest that agents in sparse-reward environments may end
up with features that are zeroed-out.

This makes it hard for the agent to update its policy if it sees a reward later.

How do different auxiliary tasks fare in Atari?

Measuring feature collapse in neural networks

Estimate “numerical rank” of feature embeddings by looking at how many
non-negligible singular values the matrix of features for n randomly sampled
states has.

Compute SVD of
this matrix, count
nontrivial
singular values

What’s happening to the agents’ features?
N

um
er

ic
al

 r
an

k

From feature collapse to capacity loss

Capacity in Feature Space vs Output Space

- Feature rank gives us a sense of how much of the last layer the network is
using at a given moment

- It doesn’t tell us whether the network could use more of the last layer
given a sufficiently informative reward signal.

- What if we instead measured how well the network can fit new targets
starting from its current parameter values?

Capacity of a network N using
optimization algorithm O on
data-generating distribution D

MSE after running
optimizer O on targets
f starting at
parameters

F sampled from some
pre-defined target distribution
(e.g. Bellman targets, outputs of
different random network
initialization, hash function)

Target-fitting capacity under non-stationary targets

Neural networks tend to get worse at fitting new targets after they’ve been
made to fit several different target functions.

RL Supervised learning with different target
function classes on MNIST inputs

Preserving Representation Capacity

Freshly initialized networks are
really good at fitting lots of
different types of targets.

Idea: regularize the network so that
it maintains its ability to fit
functions it could predict at
initialization.

Regularization Objective

Auxiliary head
outputs using online
parameters

Auxiliary head
outputs at
initialization

What effect does this have on networks?

Have we overfit to sparse-reward tasks?

How does InFeR work?

Hypothesis 1: the random subspace
of features that InFeR preserves is
useful for value prediction.

Experiment: concatenate a subset of
the network’s randomly initialized
features to the penultimate layer
outputs and let the final linear layer
use these for prediction.

Result: this doesn’t produce the same
effect as InFeR on performance. ❌

Conclusions

- TD updates implicitly encourage agents’ representations to pick up on the
structure of the environment transition function.

- However, they can also lead to feature collapse when the agent doesn’t
receive any reward signal.

- The non-stationary prediction tasks agents fit over the course of training
have an adverse effect on their ability to fit future value functions.

- We present a simple approach that mitigates both of these effects, and
leads to significant performance improvements in sparse-reward
environments.

Thanks!

How does InFeR work?

Hypothesis 2: InFeR constrains how much
the network can let its representation
drift from its initial value. In
environments where InFeR hurts
performance, making significant changes to
the representation is necessary for learning
progress.

Experiment: increase the width of the
penultimate layer, preserve the number of
heads to give the representation more
degrees of freedom during training.

Result: this significantly reduces or
eliminates the performance gap in most
environments where InFeR hurts
performance over Rainbow. ✅

InFeR and Numerical Rank

Feature trajectories

The dynamics under this
parameterization aren’t linear,
so we can’t construct a general
closed form for the value
function in this case.

Still, empirically the
eigendecomposition of the
transition matrix looks like it
plays an important role!

