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Talk Outline

- Introduction: model selection and generalization
- Model selection in the i.i.d. setting

- Bayesian model selection and training speed
- Applications in neural architecture search 

- Causal perspectives on generalization
- Identifying causal structure for multi-environment generalization in RL 

- Concluding thoughts
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Risk minimization: formalism

- Given: a finite set of inputs Xtrain and 
outcomes Ytrain

- Want to learn to predict P(Y|X), with X 
sampled from some test distribution P(Xtest).

- In generative modelling (not the focus of this talk), 
may  want to also model P(X)

- Example: image classification.
- Xtrain, Ytrain are the training set of image-label  pairs
- P(Y|X) = categorical distribution (e.g. softmax) over 

labels 
- Xtest, Ytest = the data the model sees at deployment



IID vs OOD

Different learning frameworks depend on the type of shared structure 
between Xtrain and Xtest

- Same distribution: i.i.d. setting
- Same causal graph: causal structure identification
- Same conditional P(Y|X), different X: covariate shift
- Same world dynamics, different objective: multi-task RL
- Nebulous “shared structure”: meta-learning, transfer learning

We are focusing on settings where the nature of the shared structure can  be 
expressed mathematically .
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OOD (Out-of-distribution)
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Adversarially OOD
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IID vs OOD

Different learning frameworks depend on the type of shared structure 
between Xtrain and Xtest

- Same distribution: expected risk minimization
- Same causal graph: causal structure identification
- Same conditional P(Y|X), different X: covariate shift
- Same world dynamics, different objective: multi-task RL
- Nebulous “shared structure”: meta-learning, transfer learning

We are focusing on settings where the nature of the shared structure can be 
expressed mathematically .



Within-distribution generalization



Credits

“A Bayesian Perspective on Training Speed and Model Selection”, NeurIPS 2020
“Speedy Performance Estimation for Neural Architecture Search”, NeurIPS 2021



Bayesian Inference 101

Bayesian Model M = prior over parameters + likelihood function 

Examples: Bayesian linear regression, Gaussian Processes, Bayesian neural 
networks

Prior distribution P(w|M) is defined over parameters w

Likelihood function P(D|w) maps parameters to a distribution over data D.

Parameter inference updates a posterior belief over which parameters are likely to 
have generated the data using Bayes’ rule. 



Bayesian Inference 101

Parameter inference updates a posterior 
belief over which parameters are likely to 
have generated the data using Bayes’ rule. 

Model inference updates posterior belief 
over which model is most likely to have 
generated the data.



The Marginal Likelihood

Marginal likelihood = Likelihood of data given model 

(marginalized over parameters)



Type II Bayesian Inference

Can use the marginal likelihood 
to infer a posterior belief over 
the model H via Bayes’ Rule

In practice do Type II Maximum 
Likelihood: pick the model from 
a given set with the highest 
marginal likelihood



Generalization and Model Selection

Generalization: pick the model that will make the best predictions at deployment 

(Bayesian) Model Selection: pick the model that is most likely to have generated 
my training data

In practice, models with high marginal likelihood tend to generalize well.



Prequential Coding View

We can also view the marginal likelihood as measuring how well each data 
point explains the data that the model sees after it.



Bayesian updating as a training curve



Marginal Likelihood = Area Under Curve



Prequential Coding View

We can also view the marginal likelihood as measuring how well each data 
point explains the data that the model sees after it.

Can be estimated via 
posterior samples for 
each index i!



Estimating the ML via Training Speed

Can compute a lower bound on 
the ML using Jensen’s inequality 
using posterior samples 

To reduce the gap between LB 
and ML, average over many 
samples before applying 
concave function

Estimator for  

Less biased estimator for  



Estimating the ML via Gradient Descent

Matthews et al. and Osband et al. both show how to 
get posterior samples out of linear models by 
following gradient descent.

This means we can follow an iterative GD procedure 
and use a subset of the model’s training losses to 
estimate its marginal likelihood!



Algorithm



Results
Posterior sampling 
estimator correlates 
reasonably well with real 
log ML on some 
interpretable model 
selection problems

This approach also allows us to 
obtain marginal likelihood 
estimates for infinite-width 
versions of neural network 
architectures



What about neural networks?
(finite width)



Measuring Training Speed in DNNs

What happens if instead of 
summing over data points, 
we sum training losses over 
optimization steps in an SGD 
trajectory?



Training Speed and AUC

Loss

Training time



How to evaluate a model

Problem: want to find the best architecture for a problem, but don’t want to 
train the set of all possible NNs to find the best one.

Need a cheap way of estimating how good an architecture will be.



Ranking vs Prediction

Note: a good performance estimator lets us rank models

It doesn’t necessarily need to predict the final trained performance! For neural 
architecture search, we just need to know which architectures we should 
invest in training.

We therefore focus on rank correlation between a performance estimator 
evaluated early in training, and the final trained model’s performance.

Ranking of 
model’s final 
performance

Ranking of model’s 
performance estimator 
value



Rank Correlation with Generalization



Performance vs Validation Accuracy

Results of performance estimators in one-shot NAS setting over 3 supernetwork training initialisations. For each supernetwork, we 
randomly sample 500 random subnetworks for DARTS and 200 for NB201, and compute their TSE, Val Acc after inheriting the 
supernetwork weights and training for B additional mini-batches. Rank correlation measures the estimators’ correlation with the rankings 
of the true test accuracies of subnetworks when trained from scratch independently, and we compute the average test accuracy of the 
top 10 architectures identified by different estimators from all the randomly sampled subnetworks.



Differentiable NAS Search Spaces

Node = latent 
representation

Edge = operation, e.g. 
on CIFAR-10 :

{3 × 3 and 5 × 5 
separable 
convolutions, 3 × 3 
and 5 × 5 dilated 
separable 
convolutions, 3 × 3 
max pooling, 3 × 3 
average pooling, 
identity, and zero}



Differentiable NAS Performance



Model Selection: Conclusions

- In some settings, training speed can be used to estimate the marginal 
likelihood of a Bayesian model

- Even in non-Bayesian settings, training speed seems to be highly 
predictive of final generalization performance -- better than ES validation!

- Needs fixed hyperparameter set
- Needs fixed data generating distribution (no data augmentation)
- Assumes fixed training procedure (can’t compare dropout or BN vs no dropout)



Generalizing Out-of-Distribution



Credits

“Invariant Causal Prediction for Block MDPs”, ICML 2020



Problem Setting



Summary

1. Want RL agents that generalize to new environments where the 
underlying MDP structure is the same

2. So we find a representation that maps equivalent observations from 
different environments to the same abstract state

3. We use an idea from the causal inference literature called invariant 
prediction to find such a representation.

4. This extra structure makes the problem easier than meta- or 
transfer-learning and gives us nicer guarantees.



Formalizing OOD Generalization

Want to formalize shared structure between training and test distributions

Solution: consider changes induced by interventions on a causal graph!



Generalization Under Interventions

Key idea: generalizing to new environments is easy if the predictor learns to 
depend on causal ancestors of the target.
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Generalization Under Interventions

Key idea: generalizing to new environments is easy if the predictor learns to 
depend on causal ancestors of the target.

do(X=x)

Y

Z



Prior Work: Causal Inference & Invariant Prediction

Predictors which depend 
on causal parents of the 
return will satisfy certain 
invariance properties 
when evaluated under 
different interventions 
(environments).

Peters et al., 2016



Formalizing Causal Structure in MDPs

We’ll be interested 
in reinforcement 
learning, where an 
agent interacts with 
an environment 
(MDP) M so as to 
maximize 
cumulative reward.



Dealing with multiple timesteps

In RL, we’re interested in 
the sum of rewards over 
time. 

It’s not sufficient to look at 
just the causal parents of 
the reward when making 
predictions -- we also 
need to look at the 
parents, and those 
parents’ parents, and so 
on. 



Assumptions

Assumption 1: the training and 
test environments we consider 
satisfy the block MDP property 
(i.e. they share “equivalent 
structure”)

Assumption 2: The training 
environments correspond to 
interventions on variables in the 
graphical model that defines the 
MDP transition dynamics



State Abstractions

State abstractions are functions of the form 

which map the state space to a simpler abstract 
state space to make it easier for an agent to learn 
and plan.

A model irrelevance state abstraction satisfies 
the following consistency properties:



Causal Structure and State Abstractions



Linear Setting

Idea: iteratively apply the ICP algorithm (Peters et al., 2016) to identify the 
causal ancestors of the reward.



Rich observations: intuition

Shared 
structure

Env 2 
structure

Env 1 
structure

Environment 1

Environment 2

Want a representation that only 
depends on the shared structure 
between environments



State Abstractions with Rich Observations

Only care about 
generalization to 
“reasonable” inputs



Invariant 
Encoder

Task-Specific 
Encoder

Invariant 
Model

Task-Specific 
Model

Decoder

a

a

Invariant 
Reward 
Model

Method

Invariant representation contains 
reward information

Ground representations using 
transition loss

Minimize MI between 
representation and 
environment

Unique encoder 
for each task



Model Learning Imitation Learning
Reinforcement 

Learning

Results



Conclusions



Key take-aways

- Identifying the right inductive bias for a set of tasks can be made arbitrarily 
challenging, but the problem is tractable for a rich class of problems defined 
by causal manipulations to the data-generating process.

 - Two simple ideas, invariance and training speed, provide surprisingly 
powerful tools with theoretical guarantees for a wide range of model selection 
problems.

- Scalable methods inspired by these tools lead to improved generalization in 
high-dimensional input spaces with complex dynamics.



Food for thought: invariance

- When we explicitly enforce invariance, we encourage the representation 

to identify when different inputs are equivalent

- Implicitly, training speed is also measuring this equivalence but at a the 

“gradient update level”
- If all inputs map to the same gradient update, then the training loss will decrease rapidly 

because every gradient step lowers the loss of the entire training set

- Is there a unifying framework under which these phenomena are two 

sides of the same coin?



Thanks!


