
The Many Faces of Model
Selection

Clare Lyle
November 2021

Talk Outline

- Introduction: model selection and generalization
- Model selection in the i.i.d. setting

- Bayesian model selection and training speed
- Applications in neural architecture search

- Causal perspectives on generalization
- Identifying causal structure for multi-environment generalization in RL

- Concluding thoughts

Generalization

Generalization

Input X Target Y = f (X)

Generalization

Input X Target Y = f (X)

Generalization

Input X Target Y = f (X)

?

Generalization

Input X Target Y = f (X)

Risk minimization: formalism

- Given: a finite set of inputs Xtrain and
outcomes Ytrain

- Want to learn to predict P(Y|X), with X
sampled from some test distribution P(Xtest).

- In generative modelling (not the focus of this talk),
may want to also model P(X)

- Example: image classification.
- Xtrain, Ytrain are the training set of image-label pairs
- P(Y|X) = categorical distribution (e.g. softmax) over

labels
- Xtest, Ytest = the data the model sees at deployment

IID vs OOD

Different learning frameworks depend on the type of shared structure
between Xtrain and Xtest

- Same distribution: i.i.d. setting
- Same causal graph: causal structure identification
- Same conditional P(Y|X), different X: covariate shift
- Same world dynamics, different objective: multi-task RL
- Nebulous “shared structure”: meta-learning, transfer learning

We are focusing on settings where the nature of the shared structure can be
expressed mathematically .

IID
Train Test

OOD (Out-of-distribution)
Train Test

Adversarially OOD
Train Test

IID vs OOD

Different learning frameworks depend on the type of shared structure
between Xtrain and Xtest

- Same distribution: expected risk minimization
- Same causal graph: causal structure identification
- Same conditional P(Y|X), different X: covariate shift
- Same world dynamics, different objective: multi-task RL
- Nebulous “shared structure”: meta-learning, transfer learning

We are focusing on settings where the nature of the shared structure can be
expressed mathematically .

Within-distribution generalization

Credits

“A Bayesian Perspective on Training Speed and Model Selection”, NeurIPS 2020
“Speedy Performance Estimation for Neural Architecture Search”, NeurIPS 2021

Bayesian Inference 101

Bayesian Model M = prior over parameters + likelihood function

Examples: Bayesian linear regression, Gaussian Processes, Bayesian neural
networks

Prior distribution P(w|M) is defined over parameters w

Likelihood function P(D|w) maps parameters to a distribution over data D.

Parameter inference updates a posterior belief over which parameters are likely to
have generated the data using Bayes’ rule.

Bayesian Inference 101

Parameter inference updates a posterior
belief over which parameters are likely to
have generated the data using Bayes’ rule.

Model inference updates posterior belief
over which model is most likely to have
generated the data.

The Marginal Likelihood

Marginal likelihood = Likelihood of data given model

(marginalized over parameters)

Type II Bayesian Inference

Can use the marginal likelihood
to infer a posterior belief over
the model H via Bayes’ Rule

In practice do Type II Maximum
Likelihood: pick the model from
a given set with the highest
marginal likelihood

Generalization and Model Selection

Generalization: pick the model that will make the best predictions at deployment

(Bayesian) Model Selection: pick the model that is most likely to have generated
my training data

In practice, models with high marginal likelihood tend to generalize well.

Prequential Coding View

We can also view the marginal likelihood as measuring how well each data
point explains the data that the model sees after it.

Bayesian updating as a training curve

Marginal Likelihood = Area Under Curve

Prequential Coding View

We can also view the marginal likelihood as measuring how well each data
point explains the data that the model sees after it.

Can be estimated via
posterior samples for
each index i!

Estimating the ML via Training Speed

Can compute a lower bound on
the ML using Jensen’s inequality
using posterior samples

To reduce the gap between LB
and ML, average over many
samples before applying
concave function

Estimator for

Less biased estimator for

Estimating the ML via Gradient Descent

Matthews et al. and Osband et al. both show how to
get posterior samples out of linear models by
following gradient descent.

This means we can follow an iterative GD procedure
and use a subset of the model’s training losses to
estimate its marginal likelihood!

Algorithm

Results
Posterior sampling
estimator correlates
reasonably well with real
log ML on some
interpretable model
selection problems

This approach also allows us to
obtain marginal likelihood
estimates for infinite-width
versions of neural network
architectures

What about neural networks?
(finite width)

Measuring Training Speed in DNNs

What happens if instead of
summing over data points,
we sum training losses over
optimization steps in an SGD
trajectory?

Training Speed and AUC

Loss

Training time

How to evaluate a model

Problem: want to find the best architecture for a problem, but don’t want to
train the set of all possible NNs to find the best one.

Need a cheap way of estimating how good an architecture will be.

Ranking vs Prediction

Note: a good performance estimator lets us rank models

It doesn’t necessarily need to predict the final trained performance! For neural
architecture search, we just need to know which architectures we should
invest in training.

We therefore focus on rank correlation between a performance estimator
evaluated early in training, and the final trained model’s performance.

Ranking of
model’s final
performance

Ranking of model’s
performance estimator
value

Rank Correlation with Generalization

Performance vs Validation Accuracy

Results of performance estimators in one-shot NAS setting over 3 supernetwork training initialisations. For each supernetwork, we
randomly sample 500 random subnetworks for DARTS and 200 for NB201, and compute their TSE, Val Acc after inheriting the
supernetwork weights and training for B additional mini-batches. Rank correlation measures the estimators’ correlation with the rankings
of the true test accuracies of subnetworks when trained from scratch independently, and we compute the average test accuracy of the
top 10 architectures identified by different estimators from all the randomly sampled subnetworks.

Differentiable NAS Search Spaces

Node = latent
representation

Edge = operation, e.g.
on CIFAR-10 :

{3 × 3 and 5 × 5
separable
convolutions, 3 × 3
and 5 × 5 dilated
separable
convolutions, 3 × 3
max pooling, 3 × 3
average pooling,
identity, and zero}

Differentiable NAS Performance

Model Selection: Conclusions

- In some settings, training speed can be used to estimate the marginal
likelihood of a Bayesian model

- Even in non-Bayesian settings, training speed seems to be highly
predictive of final generalization performance -- better than ES validation!

- Needs fixed hyperparameter set
- Needs fixed data generating distribution (no data augmentation)
- Assumes fixed training procedure (can’t compare dropout or BN vs no dropout)

Generalizing Out-of-Distribution

Credits

“Invariant Causal Prediction for Block MDPs”, ICML 2020

Problem Setting

Summary

1. Want RL agents that generalize to new environments where the
underlying MDP structure is the same

2. So we find a representation that maps equivalent observations from
different environments to the same abstract state

3. We use an idea from the causal inference literature called invariant
prediction to find such a representation.

4. This extra structure makes the problem easier than meta- or
transfer-learning and gives us nicer guarantees.

Formalizing OOD Generalization

Want to formalize shared structure between training and test distributions

Solution: consider changes induced by interventions on a causal graph!

Generalization Under Interventions

Key idea: generalizing to new environments is easy if the predictor learns to
depend on causal ancestors of the target.

X

Y

Z

Generalization Under Interventions

Key idea: generalizing to new environments is easy if the predictor learns to
depend on causal ancestors of the target.

X

Y

do(Z=z)

Generalization Under Interventions

Key idea: generalizing to new environments is easy if the predictor learns to
depend on causal ancestors of the target.

do(X=x)

Y

Z

Prior Work: Causal Inference & Invariant Prediction

Predictors which depend
on causal parents of the
return will satisfy certain
invariance properties
when evaluated under
different interventions
(environments).

Peters et al., 2016

Formalizing Causal Structure in MDPs

We’ll be interested
in reinforcement
learning, where an
agent interacts with
an environment
(MDP) M so as to
maximize
cumulative reward.

Dealing with multiple timesteps

In RL, we’re interested in
the sum of rewards over
time.

It’s not sufficient to look at
just the causal parents of
the reward when making
predictions -- we also
need to look at the
parents, and those
parents’ parents, and so
on.

Assumptions

Assumption 1: the training and
test environments we consider
satisfy the block MDP property
(i.e. they share “equivalent
structure”)

Assumption 2: The training
environments correspond to
interventions on variables in the
graphical model that defines the
MDP transition dynamics

State Abstractions

State abstractions are functions of the form

which map the state space to a simpler abstract
state space to make it easier for an agent to learn
and plan.

A model irrelevance state abstraction satisfies
the following consistency properties:

Causal Structure and State Abstractions

Linear Setting

Idea: iteratively apply the ICP algorithm (Peters et al., 2016) to identify the
causal ancestors of the reward.

Rich observations: intuition

Shared
structure

Env 2
structure

Env 1
structure

Environment 1

Environment 2

Want a representation that only
depends on the shared structure
between environments

State Abstractions with Rich Observations

Only care about
generalization to
“reasonable” inputs

Invariant
Encoder

Task-Specific
Encoder

Invariant
Model

Task-Specific
Model

Decoder

a

a

Invariant
Reward
Model

Method

Invariant representation contains
reward information

Ground representations using
transition loss

Minimize MI between
representation and
environment

Unique encoder
for each task

Model Learning Imitation Learning
Reinforcement

Learning

Results

Conclusions

Key take-aways

- Identifying the right inductive bias for a set of tasks can be made arbitrarily
challenging, but the problem is tractable for a rich class of problems defined
by causal manipulations to the data-generating process.

 - Two simple ideas, invariance and training speed, provide surprisingly
powerful tools with theoretical guarantees for a wide range of model selection
problems.

- Scalable methods inspired by these tools lead to improved generalization in
high-dimensional input spaces with complex dynamics.

Food for thought: invariance

- When we explicitly enforce invariance, we encourage the representation

to identify when different inputs are equivalent

- Implicitly, training speed is also measuring this equivalence but at a the

“gradient update level”
- If all inputs map to the same gradient update, then the training loss will decrease rapidly

because every gradient step lowers the loss of the entire training set

- Is there a unifying framework under which these phenomena are two

sides of the same coin?

Thanks!

