

Invariant Prediction for Generalization in Reinforcement Learning

Clare Lyle

OATML Group, University of Oxford

Credits

This talk is based off of joint work with some fantastic collaborators and advisors.

github.com/facebookreserach/icp-block-mdp https://arxiv.org/abs/2003.06016

Train RL agent on environmentsDeploy RL agent on environment $\mathcal{E}_1, \mathcal{E}_2$ \mathcal{E}_3

Standard deep RL methods **fail to generalize** to new environments

Train RL agent on environments Deploy RL agent on environment $\mathcal{E}_1, \mathcal{E}_2$ \mathcal{E}_3

Standard deep RL methods **fail to generalize** to new environments

 $\begin{array}{ccc} \mbox{Train RL agent on environments} & \mbox{Deploy RL agent on environment} \\ & \mathcal{E}_1, \, \mathcal{E}_2 & & \mathcal{E}_3 \end{array}$

Standard deep RL methods **fail to generalize** to new environments

 $\begin{array}{ccc} \mbox{Train RL agent on environments} & \mbox{Deploy RL agent on environment} \\ & \mathcal{E}_1, \, \mathcal{E}_2 & & \mathcal{E}_3 \end{array}$

Standard deep RL methods **fail to generalize** to new environments

 $\begin{array}{ccc} \mbox{Train RL agent on environments} & \mbox{Deploy RL agent on environment} \\ & \mathcal{E}_1, \, \mathcal{E}_2 & & \mathcal{E}_3 \end{array}$

Standard deep RL methods **fail to generalize** to new environments

- 1. Want RL agents that generalize to new environments where **the underlying MDP is the same**.
- 2. So find a representation that maps equivalent observations from different environments to the same abstract state.
- 3. Use an idea from the causal inference world to find this representation: **invariant prediction**.

- 1. Want RL agents that generalize to new environments where **the underlying MDP is the same**.
- 2. So find a representation that maps equivalent observations from different environments to the same abstract state.
- 3. Use an idea from the causal inference world to find this representation: **invariant prediction**.

- 1. Want RL agents that generalize to new environments where **the underlying MDP is the same**.
- 2. So find a representation that maps equivalent observations from different environments to the same abstract state.
- 3. Use an idea from the causal inference world to find this representation: **invariant prediction**.

- 1. Identifying causal variables in the state space \equiv finding model irrelevance state abstractions (MISAs)
- 2. Leveraging the shared structure of the environments leads to more environment-efficient generalization bounds.
- 3. Even when exact inference is impossible (i.e. deep RL with rich observations), learning an invariant representation leads to improved generalization.

- 1. Identifying causal variables in the state space \equiv finding model irrelevance state abstractions (MISAs)
- 2. Leveraging the shared structure of the environments leads to more environment-efficient generalization bounds.
- 3. Even when exact inference is impossible (i.e. deep RL with rich observations), learning an invariant representation leads to improved generalization.

- 1. Identifying causal variables in the state space \equiv finding model irrelevance state abstractions (MISAs)
- 2. Leveraging the shared structure of the environments leads to more environment-efficient generalization bounds.
- 3. Even when exact inference is impossible (i.e. deep RL with rich observations), learning an invariant representation leads to improved generalization.

- 1. Identifying causal variables in the state space \equiv finding model irrelevance state abstractions (MISAs)
- 2. Leveraging the shared structure of the environments leads to more environment-efficient generalization bounds.
- Even when exact inference is impossible (i.e. deep RL with rich observations), learning an invariant representation leads to improved generalization.

Details

State Abstractions

A state abstraction is a function $\phi: S \rightarrow \overline{S}$ which maps states $s \in S$ to simpler abstract state space \overline{S} . This can make it easier for an agent to learn and plan.

MISAs

A model-irrelevance state abstraction (MISA) is a state abstraction that preserves the reward function and transition dynamics of the MDP (Li et al.). i.e.

$$\phi(s) = \phi(s') \implies R(s) = R(s')$$

and
$$\sum p(s''|s) = \sum p(s''|s')$$

State Abstractions

A state abstraction is a function $\phi: S \to \overline{S}$ which maps states $s \in S$ to simpler abstract state space \overline{S} . This can make it easier for an agent to learn and plan.

MISAs

A model-irrelevance state abstraction (MISA) is a state abstraction that preserves the reward function and transition dynamics of the MDP (Li et al.). i.e.

$$\phi(s) = \phi(s') \implies R(s) = R(s')$$

and
$$\sum p(s''|s) = \sum p(s''|s')$$

State Abstractions

A state abstraction is a function $\phi: S \rightarrow \overline{S}$ which maps states $s \in S$ to simpler abstract state space \overline{S} . This can make it easier for an agent to learn and plan.

MISAs

A model-irrelevance state abstraction (MISA) is a state abstraction that preserves the reward function and transition dynamics of the MDP (Li et al.). i.e.

$$\phi(s) = \phi(s') \implies R(s) = R(s')$$

and
$$\sum p(s''|s) = \sum p(s''|s')$$

State Abstractions in Deep RL

1. Canonical state abstraction model

$$\mathcal{X} \to \Phi = \phi(\mathcal{X}) \to \hat{V} = f(\Phi)$$

2. Deep RL model

$$\underbrace{\begin{array}{c} \Phi(X) \\ \mathcal{X} \to \Phi_1 = \phi_1(\mathcal{X}) \\ \Phi(X) \end{array}}_{\Phi(X)} \xrightarrow{f(\Phi)} \phi_N(\Phi_{N-1}) \to \hat{V} = f(\Phi_N) \\ f(\Phi) \\ f(\Phi)$$

- 3. Can think of each layer in DNN as *both* representation and value function.
- 4. When auxiliary loss used to train representation, will say representation layer is the one where this loss is applied.

- We're interested in families of MDPs M₁,..., M_k that are 'behaviourally equivalent'.
- I.e. want $\mathcal{M}_1, \ldots, \mathcal{M}_k$ with state spaces $\mathcal{X}_1, \ldots, \mathcal{X}_k$
- for which ∃φ s.t. φ(X_i) = φ(X_j) forall i, j and φ is a MISA for the union ∪_{i∈I}X_i.
- Question: how can we learn φ from a subset of the environments {M_i}?
- Answer: use the causal structure of the problem.

- We're interested in families of MDPs M₁,..., M_k that are 'behaviourally equivalent'.
- I.e. want $\mathcal{M}_1, \ldots, \mathcal{M}_k$ with state spaces $\mathcal{X}_1, \ldots, \mathcal{X}_k$
- for which ∃φ s.t. φ(X_i) = φ(X_j) forall i, j and φ is a MISA for the union ∪_{i∈I}X_i.
- Question: how can we learn φ from a subset of the environments {M_i}?
- Answer: use the causal structure of the problem.

- We're interested in families of MDPs M₁,..., M_k that are 'behaviourally equivalent'.
- I.e. want $\mathcal{M}_1, \ldots, \mathcal{M}_k$ with state spaces $\mathcal{X}_1, \ldots, \mathcal{X}_k$
- for which ∃φ s.t. φ(X_i) = φ(X_j) forall i, j and φ is a MISA for the union ∪_{i∈I}X_i.
- Question: how can we learn φ from a subset of the environments {M_i}?
- Answer: use the causal structure of the problem.

- We're interested in families of MDPs M₁,..., M_k that are 'behaviourally equivalent'.
- I.e. want $\mathcal{M}_1, \ldots, \mathcal{M}_k$ with state spaces $\mathcal{X}_1, \ldots, \mathcal{X}_k$
- for which ∃φ s.t. φ(X_i) = φ(X_j) forall i, j and φ is a MISA for the union ∪_{i∈I}X_i.
- Question: how can we learn φ from a subset of the environments {M_i}?
- Answer: use the causal structure of the problem.

Causal Structure

Decompose agent's observation o_t into 'causal' and 'spurious' components s_t and η_t .

Definition

A Block MDP is a tuple $\langle S, A, X, p, q, R \rangle$

- unobservable state space ${\cal S}$
- finite action space \mathcal{A}
- observation space X
- transition distribution p
- reward function R
- (injective) emission function $q: S \to X$

Figure 2: Top: Graphical model for a Block MDP. The observation o_t is modelled here as a function of the state s_t and a noise variable η_t . In a Block MDP, there is

Invariant Causal Prediction: Intuition

- We want a way of leveraging data collected from many environments to find a representation that captures the causal structure of the underlying dynamics model.
- ICP Hypothesis:

$Causality \iff Invariance \qquad (1)$

- i.e. given a set of environments corresponding to *interventions* on variables in the causal graph, a predictor that depends on variables that are causal parents of the target will be invariant across the environments.
- Can use this invariance criterion as a means of selecting (or even learning) a representation.

Invariant Causal Prediction

Figure 1: An example including three environments. The invariance (1) and (2) holds if we consider $S^* = \{X_2, X_4\}$. Considering indirect causes instead of direct ones (e.g. $\{X_2, X_5\}$) or an incomplete set of direct causes (e.g. $\{X_4\}$) may not be sufficient to guarantee invariant prediction.

Figure 3: Invariant Causal Prediction (Peters et al., 2016)

• Assumption 1: The

observation space of a Block MDP is fully observable, and therefore exhibits the Markov property.

 Assumption 2: The components of the current observation are independent conditioned on the previous observation, i.e.

$$p(X_{t+1}^1|X_t, X_{t+1}^2) = P(X_{t+1}^1|X_t)$$
(2)

Figure 4: Graphical model demonstrating assumption 2.

Assumption 1: The

observation space of a Block MDP is fully observable, and therefore exhibits the Markov property.

 Assumption 2: The components of the current observation are independent conditioned on the previous observation, i.e.

$$p(X_{t+1}^1|X_t, X_{t+1}^2) = P(X_{t+1}^1|X_t)$$
(2)

Figure 4: Graphical model demonstrating assumption 2.

• Assumption 1: The

observation space of a Block MDP is fully observable, and therefore exhibits the Markov property.

 Assumption 2: The components of the current observation are independent conditioned on the previous observation, i.e.

$$p(X_{t+1}^1|X_t, X_{t+1}^2) = P(X_{t+1}^1|X_t)$$
(2)

Figure 4: Graphical model demonstrating assumption 2.

Assumption 1: The

observation space of a Block MDP is fully observable, and therefore exhibits the Markov property.

 Assumption 2: The components of the current observation are independent conditioned on the previous observation, i.e.

$$p(X_{t+1}^1|X_t, X_{t+1}^2) = P(X_{t+1}^1|X_t)$$
(2)

Figure 4: Graphical model demonstrating assumption 2.

Results

Causality and MISAs

Causal Variables \iff State Abstractions

- Consider the setting where variables are observable: state
 s = (x₁,..., x_n).
- Take the variables which are **causal ancestors** of the return, $\bar{s} = (x_{i_1}, \dots, x_{i_k})$
- Then the mapping φ : (x₁,...,x_n) → (x_{i1},...,x_{ik}) ...
 is a model irrelevance state abstraction

Theorem 1

Let $S_R \subseteq \{1, ..., k\}$ be the set of variables such that the reward R(x, a) is a function only of $[x]_{S_R}$ (x restricted to the indices in S_R). Then let $S = \mathbf{AN}(R)$ denote the ancestors of S_R in the (fully observable) causal graph corresponding to the transition dynamics of $M_{\mathcal{E}}$. Then the state abstraction $\phi_S(x) = [x]_S$ is a model-irrelevance abstraction for every $a \in \mathcal{E}$

Causality and MISAs

Causal Variables \iff State Abstractions

- Consider the setting where variables are observable: state
 s = (x₁,..., x_n).
- Take the variables which are **causal ancestors** of the return, $\bar{s} = (x_{i_1}, \dots, x_{i_k})$
- Then the mapping φ : (x₁,...,x_n) → (x_{i1},...,x_{ik}) ...
 is a model irrelevance state abstraction

Theorem 1

Let $S_R \subseteq \{1, \ldots, k\}$ be the set of variables such that the reward R(x, a) is a function only of $[x]_{S_R}$ (x restricted to the indices in S_R). Then let $S = \mathbf{AN}(R)$ denote the ancestors of S_R in the (fully observable) causal graph corresponding to the transition dynamics of $M_{\mathcal{E}}$. Then the state abstraction $\phi_S(x) = [x]_S$ is a model-irrelevance abstraction for every $e \in \mathcal{E}$

Good state abstractions

MISAs generalize well to new environments because the agent can immediately apply its knowledge from previous environments.

Model error bound

Consider an MDP *M*, with *M'* denoting a coarser bisimulation of *M*. Let ϕ denote the mapping from states of *M* to states of *M'*. Suppose that the dynamics of *M* are *L*-Lipschitz w.r.t. $\phi(X)$ and that *T* is some approximate transition model satisfying $\max_s \mathbb{E} || T(\phi(s)) - \phi(T_M(s)) || < \delta$, for some $\delta > 0$. Let $W_1(\pi_1, \pi_2)$ denote the 1-Wasserstein distance. Then

 $\mathbb{E}_{x \sim M'}[\|T(\phi(x)) - \phi(T_{M'}(x))\|] \le \delta + 2LW_1(\pi_{\phi(M)}, \pi_{\phi(M')}).$ (3)

Good state abstractions

MISAs generalize well to new environments because the agent can immediately apply its knowledge from previous environments.

Model error bound

Consider an MDP *M*, with *M'* denoting a coarser bisimulation of *M*. Let ϕ denote the mapping from states of *M* to states of *M'*. Suppose that the dynamics of *M* are *L*-Lipschitz w.r.t. $\phi(X)$ and that *T* is some approximate transition model satisfying $\max_s \mathbb{E} \| T(\phi(s)) - \phi(T_M(s)) \| < \delta$, for some $\delta > 0$. Let $W_1(\pi_1, \pi_2)$ denote the 1-Wasserstein distance. Then

$$\mathbb{E}_{x \sim M'}[\|T(\phi(x)) - \phi(T_{M'}(x))\|] \le \delta + 2LW_1(\pi_{\phi(M)}, \pi_{\phi(M')}).$$
(3)

When state is equal to the variables in the causal graph, it's straightforward to apply known causal prediction methods to find the causal ancestors of the reward.

```
Algorithm: ICP for Model Irrelevance State Abstractions
Result: S \subset \{1, \ldots, k\}, the causal state variables
Input: \alpha, a confidence parameter, \mathcal{D}, an replay buffer with
 observations \mathcal{X} (partitioned into environments e_1, \ldots, e_k).
 S \leftarrow \emptyset:
stack \leftarrow r :
while stack is not empty do
     v = stack.pop();
    if v \notin S then
         S' \leftarrow \text{ICP}(v, \mathcal{D}, \frac{\alpha}{\dim(\mathcal{X})});
         S \leftarrow S \cup S':
          stack.push(S')
```

When state is equal to the variables in the causal graph, it's straightforward to apply known causal prediction methods to find the causal ancestors of the reward.

Algorithm: ICP for Model Irrelevance State Abstractions

Result: $S \subset \{1, ..., k\}$, the causal state variables **Input:** α , a confidence parameter, \mathcal{D} , an replay buffer with observations \mathcal{X} (partitioned into environments $e_1, ..., e_k$).

 $S \leftarrow \emptyset;$

stack \leftarrow r ;

while stack is not empty do

```
v = \text{stack.pop}() ;
if v \notin S then
S' \leftarrow \text{ICP}(v, \mathcal{D}, \frac{\alpha}{\dim(\mathcal{X})}) ;
S \leftarrow S \cup S' ;
\text{stack.push}(S')
```

Rich Observation Setting

In the rich observation setting, we can't obtain guarantees. However, we propose a method for learning approximate MISAs.

Model Learning

Imitation Learning

Reinforcement Learning

- We show that invariant prediction can be used to find good state abstractions that pick up on the shared causal structure between environments.
- We prove some results on how to find these state abstractions and how well they'll generalize.
- We present an approach that leverages invariant prediction to obtain improved generalization to new environments on a variety of tasks.

Thanks!