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A not-so-simple problem

Train RL agent on environments
E1, E2

Deploy RL agent on environment
E3

Standard deep RL methods fail to generalize to new
environments
even when the new environments share a similar structure

with the training environments
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A simple(?) solution

1. Want RL agents that generalize to new environments where
the underlying MDP is the same.

2. So find a representation that maps equivalent observations
from different environments to the same abstract state.

3. Use an idea from the causal inference world to find this
representation: invariant prediction.



A simple(?) solution

1. Want RL agents that generalize to new environments where
the underlying MDP is the same.

2. So find a representation that maps equivalent observations
from different environments to the same abstract state.

3. Use an idea from the causal inference world to find this
representation: invariant prediction.



A simple(?) solution

1. Want RL agents that generalize to new environments where
the underlying MDP is the same.

2. So find a representation that maps equivalent observations
from different environments to the same abstract state.

3. Use an idea from the causal inference world to find this
representation: invariant prediction.



TL;DR

1. Identifying causal variables in the state space ≡ finding
model irrelevance state abstractions (MISAs)

2. Leveraging the shared structure of the environments leads
to more environment-efficient generalization bounds.

3. Even when exact inference is impossible (i.e. deep RL with
rich observations), learning an invariant representation
leads to improved generalization.



TL;DR

1. Identifying causal variables in the state space ≡ finding
model irrelevance state abstractions (MISAs)

2. Leveraging the shared structure of the environments leads
to more environment-efficient generalization bounds.

3. Even when exact inference is impossible (i.e. deep RL with
rich observations), learning an invariant representation
leads to improved generalization.



TL;DR

1. Identifying causal variables in the state space ≡ finding
model irrelevance state abstractions (MISAs)

2. Leveraging the shared structure of the environments leads
to more environment-efficient generalization bounds.

3. Even when exact inference is impossible (i.e. deep RL with
rich observations), learning an invariant representation
leads to improved generalization.



TL;DR

1. Identifying causal variables in the state space ≡ finding
model irrelevance state abstractions (MISAs)

2. Leveraging the shared structure of the environments leads
to more environment-efficient generalization bounds.

3. Even when exact inference is impossible (i.e. deep RL with
rich observations), learning an invariant representation
leads to improved generalization.



Details



State Abstractions

State Abstractions
A state abstraction is a function
ϕ : S → S̄ which maps states s ∈ S to
simpler abstract state space S̄ . This
can make it easier for an agent to learn
and plan.

MISAs
A model-irrelevance state
abstraction (MISA) is a state
abstraction that preserves the reward
function and transition dynamics of the
MDP (Li et al.). i.e.

ϕ(s) = ϕ(s′) =⇒ R(s) = R(s′)
and ∑

s′′∈ϕ−1(s̄′′)
p(s′′|s) = ∑

s′′∈ϕ−1(s̄′′)
p(s′′|s′)
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State Abstractions in Deep RL

1. Canonical state abstraction model
X → Φ = ϕ(X )→ V̂ = f(Φ)

2. Deep RL model
Φ(X)︷ ︸︸ ︷︸ ︷︷ ︸

Φ(X)

X → Φ1 = ϕ1(X )

f(Φ)︷ ︸︸ ︷
→ Φ2 · · · → ΦN = ϕN(ΦN−1)︸ ︷︷ ︸

f(Φ)

→ V̂ = f(ΦN)

3. Can think of each layer in DNN as both representation and
value function.

4. When auxiliary loss used to train representation, will say
representation layer is the one where this loss is applied.

T

X Φ V̂ = f(Φ)

ℓrep

ϕ

g
f

ℓval



Block MDPs: Intuition

• We’re interested in families of MDPs M1, . . . ,Mk that
are ’behaviourally equiivalent’.

• I.e. want M1, . . . ,Mk with state spaces X1, . . . ,Xk

• for which ∃ϕ s.t. ϕ(Xi) = ϕ(Xj) forall i, j and ϕ is a MISA
for the union ∪i∈IXi.

• Question: how can we learn ϕ from a subset of the
environments {Mi}?

• Answer: use the causal structure of the problem.
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Causal Structure

Decompose agent’s observation ot into ‘causal’ and ‘spurious’
components st and ηt.



Block MDP

Definition
A Block MDP is a tuple
⟨S ,A,X , p, q,R⟩

• unobservable state space
S

• finite action space A
• observation space X
• transition distribution p
• reward function R
• (injective) emission

function q : S → X

Figure 2: Top: Graphical model for a
Block MDP. The observation ot is modelled

here as a function of the state st and a
noise variable ηt. In a Block MDP, there is
no arrow from ηt to ηt+1; our method can
also handle settings where there is an arrow

ηt → ηt+1 (bottom).



Invariant Causal Prediction: Intuition

• We want a way of leveraging data collected from many
environments to find a representation that captures the causal
structure of the underlying dynamics model.

• ICP Hypothesis:

Causality ⇐⇒ Invariance (1)

• i.e. given a set of environments corresponding to interventions
on variables in the causal graph, a predictor that depends on
variables that are causal parents of the target will be invariant
across the environments.

• Can use this invariance criterion as a means of selecting (or
even learning) a representation.



Invariant Causal Prediction

<1>

Figure 3: Invariant Causal Prediction (Peters et al., 2016)



Assumptions

• Assumption 1: The
observation space of a Block
MDP is fully observable, and
therefore exhibits the Markov
property.

• Assumption 2: The
components of the current
observation are independent
conditioned on the previous
observation, i.e.

p(X1
t+1|Xt,X2

t+1) = P(X1
t+1|Xt)

(2)

• Assumption 3: The training
environments correspond to
interventions on variables in the
observation space.

Figure 4: Graphical model
demonstrating assumption 2.
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Results



Causality and MISAs

Causal Variables ⇐⇒ State Abstractions

• Consider the setting where variables are observable: state
s = (x1, . . . , xn).

• Take the variables which are causal ancestors of the return,
s̄ = (xi1 , . . . , xik)

• Then the mapping ϕ : (x1, . . . xn) 7→ (xi1 , . . . , xik) ...
is a model irrelevance state abstraction

Theorem 1
Let SR ⊆ {1, . . . , k} be the set of variables such that the reward
R(x, a) is a function only of [x]SR (x restricted to the indices in
SR). Then let S = AN(R) denote the ancestors of SR in the (fully
observable) causal graph corresponding to the transition dynamics
of ME . Then the state abstraction ϕS(x) = [x]S is a
model-irrelevance abstraction for every e ∈ E .
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Bounds on Generalization Error

Good state abstractions
MISAs generalize well to new environments because the agent can
immediately apply its knowledge from previous environments.

Model error bound
Consider an MDP M, with M′ denoting a coarser bisimulation of
M. Let ϕ denote the mapping from states of M to states of M′.
Suppose that the dynamics of M are L-Lipschitz w.r.t. ϕ(X) and
that T is some approximate transition model satisfying
maxs E∥T(ϕ(s))− ϕ(TM(s))∥ < δ, for some δ > 0. Let
W1(π1,π2) denote the 1-Wasserstein distance. Then

Ex∼M′ [∥T(ϕ(x))− ϕ(TM′(x))∥] ≤ δ + 2LW1(πϕ(M),πϕ(M′)). (3)
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Observable Variables Setting

When state is equal to the variables in the causal graph, it’s
straightforward to apply known causal prediction methods to find
the causal ancestors of the reward.
Algorithm: ICP for Model Irrelevance State Abstractions
Result: S ⊂ {1, . . . , k}, the causal state variables
Input: α, a confidence parameter, D, an replay buffer with
observations X (partitioned into environments e1, . . . , ek).
S← ∅;

stack ← r ;
while stack is not empty do

v = stack.pop() ;
if v ̸∈ S then

S′ ← ICP(v, D, α
dim(X )

) ;
S← S ∪ S′ ;
stack.push(S′)

return S



Observable Variables Setting

When state is equal to the variables in the causal graph, it’s
straightforward to apply known causal prediction methods to find
the causal ancestors of the reward.
Algorithm: ICP for Model Irrelevance State Abstractions
Result: S ⊂ {1, . . . , k}, the causal state variables
Input: α, a confidence parameter, D, an replay buffer with
observations X (partitioned into environments e1, . . . , ek).
S← ∅;

stack ← r ;
while stack is not empty do

v = stack.pop() ;
if v ̸∈ S then

S′ ← ICP(v, D, α
dim(X )

) ;
S← S ∪ S′ ;
stack.push(S′)

return S



Rich Observation Setting

In the rich observation setting, we can’t obtain guarantees.
However, we propose a method for learning approximate MISAs.

Invariant 
Encoder

Task-Specific 
Encoder

Invariant 
Model

Task-Specific 
Model

Decoder

a

a

Invariant 
Reward Model

Figure 5: Architecture for Rich Observation Setting



Empirical Results

Model Learning
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Empirical Results

Imitation Learning
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Empirical Results

Reinforcement Learning



Conclusions

• We show that invariant prediction can be used to find good
state abstractions that pick up on the shared causal structure
between environments.

• We prove some results on how to find these state abstractions
and how well they’ll generalize.

• We present an approach that leverages invariant prediction to
obtain improved generalization to new environments on a
variety of tasks.



Thanks!


