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Abstract
Invariance is often cited as a desirable property
of machine learning systems, claimed to improve
model accuracy and reduce overfitting. Empir-
ically, invariant models often generalize better
than their non-invariant counterparts. But is it
possible to show that invariant models provably
do so? In this paper we explore the effect of in-
variance on model generalization. We find strong
Bayesian and frequentist motivations for enforc-
ing invariance which leverage recent results con-
necting PAC-Bayes generalization bounds and
the marginal likelihood. We make use of these
results to perform model selection on neural net-
works.

1. Introduction
Real-world data often exhibits invariance properties that
naive neural network architectures fail to capture. For ex-
ample, a convolutional neural network trained on upright
handwritten digits will see a dramatic drop in accuracy on
rotations of its training set, and most image recognition sys-
tems fall prey to adversarial examples, even when trained
on noisy inputs (Szegedy et al., 2013; Carlini & Wagner,
2017). Invariance is thus cited as a desirable property of
neural networks, and one that is notoriously difficult to im-
plement architecturally.

The success of architectures like convolutional neural net-
works (LeCun et al., 1995), DeepSets (Zaheer et al.,
2017), and group-equivariant convolutional layers (Cohen
& Welling, 2016), is often attributed to their invariance
properties. However, there has been relatively little work
examining the effect of invariance on learning algorithms.
Early work on symmetries in neural networks (Shawe-
Taylor, 1993) suggests that invariance can improve gener-
alization bounds, but as most of these bounds are vacuous
to begin with these results do not yield practical guidance
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for model selection.

This then begs the question: why should we prefer invari-
ant models? Intuitively, there are many possible reasons:
perhaps invariant architectures simplify the input space in
some sense, thus reducing sample complexity. Perhaps
they allow us to simplify parameter space, making opti-
mization more efficient and reducing the chance of over-
fitting. Perhaps the space of invariant functions is better-
behaved in some sense than non-invariant ones, even hold-
ing the number of parameters and input space fixed.

In this paper we endeavour to develop a better theoretical
understanding of invariance in learning algorithms. Our
findings are summarized as follows.

1. We show that enforcing invariance to a set of transfor-
mations exhibited in the data increases the Bayesian
model evidence, and reduces the model’s loss func-
tion whenever the loss is convex with respect to the
predictions.

2. We leverage existing work to show that incorporat-
ing invariance into model structure improves a PAC-
Bayes generalization bound.

3. We verify our claims empirically, and show that an
approximation of the marginal likelihood can be used
to select for invariant neural networks.

2. Background
We first introduce notation that will recur throughout the
paper.

Definition 1 (Reynolds operator). LetF be a class of func-
tions with input space X . Let G be a finite group acting on
X . Then the operator R : F → F will yield a function
invariant to G as follows

R(f)(x) =

(
1

|G|
∑
g∈G

f(gx)

)
We will often use the notation f̄ = R(f).

An analogous operator can be considered for distributions,
where, given a probability distribution η on a set of func-
tions F , we define RD(η) over the invariant functions
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R(F) by

RD(η)(f̄) :=
∑

f∈R−1(f̄)

η(f)

and will use the notation η̄ = R(η).

This operator corresponds to a practical method that we
will refer to as feature averaging, whereby the outputs of
some layer of a neural network are averaged over a set of
transformations of the input. In practice this is generally
done at the final prediction layer of the network, and its use
goes back as far as 2012, when state-of-the-art results on
ImageNet (Krizhevsky et al., 2017) averaged predictions
over random crops of the input image at test time.

Feature averaging can be likened to data augmentation,
though the two are not quite identical. In the linear setting,
feature averaging can be viewed as a first order approxima-
tion of data augmentation (Dao et al., 2018). Leveraging
invariances using this averaging approach has seen success
in Gaussian Processes (GPs), where van der Wilk et al. (van
der Wilk et al., 2018) find that by optimizing the marginal
likelihood of the GP, they’re able to recover nontrivial sets
of transformations over which to average the model’s ker-
nel to improve its performance.

Beyond applying transformations to input and averaging
the model’s output, other approaches construct equivariant
neural network layers so that intermediate representations
are equivariant to a desired group. Recent work by Cohen
et al. (Cohen & Welling, 2016; Cohen et al., 2018) extends
the convolutional filter to more exotic groups than transla-
tions in Z2, allowing networks to exhibit equivariance to
these groups. Other work proposes a more general frame-
work for equivariance through parameter sharing (Ravan-
bakhsh et al., 2017). While this is a prolific field of study,
it is unclear whether the networks proposed benefit from
equivariance specifically, or from the specific filters used.
These methods reduce the number of parameters necessary
to obtain a given training set performance, and anecdotally
reducing the number of parameters in a model tends to im-
prove generalization error.

The connection between generalization and invariance is
drawn by Shawe-Taylor (Shawe-Taylor, 1993) in multi-
layer perceptrons. These generalization bounds depend on
the VC dimension of the neural network, and thus are gen-
erally vacuous on modern architectures. Nonetheless, in-
variance is broadly considered to be a desirable property
by deep learning practitioners. More theoretical properties
of invariant models are explored in (Bloem-Reddy & Whye
Teh, 2019). Further work on the relationship between the
marginal likelihood and PAC Bayes bounds (Germain et al.,
2016) is suggestive of a connection between invariance and
generalization, although it does not make this point explic-
itly. We will formalise these connections in our study of

invariance.

3. Theoretical properties of invariant models
We first observe a few properties of the operator R.

Lemma 1. Given a neural network architecture f , let fθ,
where θ ∈ Rd denote the function defined by architecture f
and parameters θ ∈ Rd. Then there exists a neural network
f such that F := {fθ : θ ∈ Rd} 6= F̄ := {f̄θ : θ ∈
Rd}. That is, the class of functions we can compute using
f is distinct from the class of functions we can compute by
averaging inputs over the action of a group.

The proof of this statement and those that follow can be
found in the supplementary material. This result is signif-
icant as previous comparisons between feature averaging
and data augmentation in the kernel methods setting had
suggested that the two approaches were closely linked, be-
ing equivalent to first order, while our observation shows
the limitations of this observation in the deep learning set-
ting. Indeed, F and F̄ are computing fundamentally dif-
ferent classes of functions, and so optimal parameters for
one may be far removed from the optimal parameters for
the other.

Although these two classes of functions are different, and
based on empirical evidence presented in section 4 the
feature averaging approach appears to perform better, we
would like to demonstrate a more principled motivation for
performing feature averaging. Do feature averaged mod-
els have nicer theoretical properties? The answer to this
question is affirmative, as we can show that, provided the
function we wish to compute satisfies the invariance given
by G, averaging out our predictions increases the Bayesian
model evidence of our class of models.

3.1. The Bayesian perspective

Invariances can have powerful effects on Bayesian ap-
proaches to generalization bounds and model selection. We
will use M to denote a model (e.g. a neural network ar-
chitecture), and θ to denote a set of parameters. We first
consider the regression setting, where our model implic-
itly defines a probability distribution over Y given by some
output Mθ(x).

Theorem 1. Let M be a model such that

P (y|θ, x,M) ∝ exp(−`(Mθ(x), y))

where ` is a convex loss function. Let G acting on X
be such that y(gx) = y(x)∀g ∈ G. Let M̄θ(x) =

1
|G|
∑
g∈GMθ(gx). Then

P (Y |X,M) ≤ P (Y |X, M̄).
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In the classification setting, where Y is a discrete set of
labels, we can show a similar result.

Theorem 2. Let P (Y |M̄θ, X) = 1
|G|
∑
g∈G P (y|Mθ, gx)

then
P (Y |M̄θ, X) ≥ P (Y |Mθ, X)

It’s then trivial to show that the marginal likelihood of in-
variant models obtained by the Reynolds operator will al-
ways be lower bounded by the marginal likelihood of the
non-invariant model from which they are derived. Be-
cause increasing the marginal likelihood of a model has
been shown to improve a PAC-Bayes generalization bound
whose loss function is the negative log likelihood (Germain
et al., 2016), we obtain immediately from the previous re-
sult that invariant models should additionally improve this
PAC-Bayes generalization bound. The results that follow
explore whether this will still be true in more general set-
tings.

Theorem 3 ((Catoni, 2007)). Given a distribution D over
X × Y a hypothesis set F , a loss function `′ : F × X ×
Y → [0, 1], a prior distribution π over F , a real number
δ ∈ (0, 1], and a real number β > 0, with probability at
least 1− δ over the choice of (X,Y ) ∼ Dn, letting

u(ρ) = −βEf∼ρL̂`
′

X,Y (f)− 1

n
(KL(ρ||π) + ln

1

δ
),

we have

∀ρ̂ on F : Ef∼ρ̂L`
′

D(f) ≤ 1

1− e−β
[1− eu(ρ̂)]

Lemma 2. Let F be a set of functions mapping spaces X
to Y and let G be a group acting on X . Let ρ and π be two
distributions on F such that ρ� π. We then have

KL(ρ||π) ≥ KL(ρ̄||π̄)

with equality when ρ is such that ρ(f)
π(f) constant over the

orbits

Theorem 4. Let u be defined as in Theorem 3. Then we
have that for any distribution ρ,

u(ρ) ≤ u(ρ̄)

And if π is invariant and ρ assigns nontrivial density to only
one element from the orbit of G, with the map R inducing
equivalence classes of size M , then

u(ρ) ≤ u(ρ̄)− 1

n
logM.

And thus the PAC-Bayes bound of Catoni is reduced by en-
forcing the invariance.

3.2. The frequentist perspective

Observation 1. If ` is a convex loss function and f̄ cor-
responds to a symmetry exhibited in dataset D, then by
Jensen’s inequality∑

x∼D
`(f(x), y) ≥

∑
x∼D

`(f̄(x), y).

This need not hold if ` is not convex. For example, if the
model averages its predicted logits before feeding this av-
erage through a softmax layer, we may not observe an im-
provement in the cross-entropy loss.

We further observe that enforcing invariance via feature av-
eraging changes the training dynamics of stochastic gradi-
ent descent. Invariant models see less variance in their gra-
dients, and so may exhibit different trajectories in weight
space during optimization. While it is easy to show that the
variance of the gradients differs, we do not prove that this
difference leads to differences in performance. Empirical
analysis of this behaviour follows in section 4.

4. Empirical investigation
4.1. Feature averaging vs data augmentation

While we have proven that invariance improves many mea-
sures of worst-case generalization properties, the types of
bounds described in the previous sections are often vacu-
ous. Indeed, given the overparametrization of most archi-
tectures used in practice, one would expect that the primary
benefit of feature averaging over data augmentation is sim-
ply to reduce the variance of the model outputs over regions
of the input space over which we know a priori the model
should be invariant.

We first empirically validate that models which perform
feature averaging do indeed see an improvement in perfor-
mance over models which train on an augmented dataset.
We evaluate models on the data set FashionMNIST aug-
mented with the discrete rotation group of 4 elements (i.e.
rotations of multiples of 90 degrees). We use a fixed con-
volutional neural network architecture consisting of three
convolutional layers followed by two dense layers, from
which we train a non-invariant model and a model which
averages its predictions over the four rotations of the input
image. Both models are trained on the augmented dataset.
We treat the classification problem as a regression problem
both to make the task more difficult for the networks and to
take advantage of the convexity of the mean squared error
loss.

We also note that feature averaging when employed only
at test time cannot be used to make up for training on non-
augmented data. For example, training a convolutional net-
work on upright MNIST and then averaging its predictions
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Log Hessian FA-CNN CNN
FashionMNIST -20.6 -19.4

MNIST -52.2 -34.9
(Lower better)

Figure 1. Model complexity term log det∇∇C(θ) for CNN and in-
variant (FA-CNN) models.

Figure 2. Test and train error for CNN and invariant (FA-CNN) mod-
els trained on FashionMNIST.

over rotations of the input does not yield an accurate clas-
sifier. However, when the training dataset is biased in some
way over the orbits of the inputs (for example, including
mostly upright images in a dataset when the desired model
should be rotation invariant), feature averaging is observed
to improve performance.

4.2. Bayesian model selection

In the previous section, we assumed a known invariance
that could be incorporated into model structure. But often
it is not known precisely what invariances a dataset may ex-
hibit. We investigate here whether it is practically possible
to perform Bayesian model selection on neural networks to
discover what invariances are exhibited in a dataset. Recall
that selecting the model with the maximum marginal like-
lihood is equivalent to selecting a model with the minimum
PAC-Bayes generalization bound.

The marginal likelihood of a deep neural network is highly
intractable, so we leverage a Laplace approximation un-
der the assumption that the parameters obtained by SGD
correspond to the maximum-likelihood solution, proposed
by (Germain et al., 2016). This requires computing the
Hessian of the neural network, which is in general also
intractable, but can be approximated by methods such as
those used in (Jastrzebski et al., 2018). In particular, we
note that the approximation we will use only requires com-
puting top eigenvalues of the Hessian provided the model
has found a sufficiently flat minimum.

To evaluate the marginal likelihood, we perform a Laplace
approximation as described by (), using a Gaussian prior
of variance σ2 = 0.1. The Laplace approximation of the
marginal likelihood given that SGD has converged to pa-

rameters θ is thus:

P (y|x,M) ≈ exp

{
−
(
C(θ) +

1

2
ln(C ′′(θ)/σ2)

)}
where C(θ) is the loss function of the network and C ′′(ω)
is its Hessian. From the observation ln(C ′′(θ)/σ2) can be
expressed as

ln(C ′′(θ)/σ2) =
∑
λi

ln(λi/σ
2)

we present a similar heuristic (Smith & Le, 2017) and con-
sider only λi > σ2. This heuristic can be seen as an ap-
proximation tool when the model assumes some noise in
the output labels, as the corresponding noise term means
that eigenvalues close to zero in noiseless Hessian will be
close to this noise term in the corresponding noisy model,
and hence will not contribute much to the log sum.

Using this approximation, we go back to the FashionM-
NIST experiments from the previous section and evalu-
ate the hessian of each model, confirming that the invari-
ant models have higher marginal likelihood than their non-
invariant counterparts (since the loss function for the in-
variant model has already been shown to be lower than the
non-invariant model, we need only consider the log hessian
term in the marginal likelihood approximation). Though
not conclusive – the difference in the log hessian values
for the non-invariant and invariant models is small for the
relatively flat minima arrived at after training on fashionM-
NIST for 100k steps – this provides promising evidence for
the utility of the marginal likelihood in model selection in
neural networks.

5. Conclusions and future work
This work has explored the effect of invariance on model
performance and generalization. We’ve found principled
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motivations for incorporating invariance into models in
terms of both Bayesian model selection and model accu-
racy. Further, we have presented the marginal likelihood
as a method of evaluating hypothesized invariances, and
demonstrated its effectiveness in a simple model selection
task. Future work may explore the generalization prop-
erties of different approaches to enforcing invariance and
equivariance, particularly in earlier layers of the neural net-
work.
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A. Proofs of results
Proof of lemma 1

Given a neural network f , let fθ, where θ ∈ Rd denote the
function defined by architecture f and parameters θ. Let G
be a finite group acting on the input space X . Denote by f̄
the function f̄(x) = 1

|G|
∑
g∈G f(gx). We claim that there

exists a neural network f such that F := {fθ : θ ∈ Rd} 6=
F̄ := {f̄θ : θ ∈ Rd}. That is, the class of functions we
can compute using f is distinct from the class of functions
we can compute by averaging inputs over the action of a
group.

Proof. Let φa(x) be a network defined by a single ReLu
unit with parameter a = (a1, a2), i.e. φa(x) =
max{0, a1x + a2}. Then the class of functions F will be
asymmetric except for the constant functions. Let G = Z2,
with the action gx = −x for the nontrivial element in G,
and so f̄(x) = f(x) + f(−x) will be symmetric. Since no
non-constant functions in F are symmetric, and no func-
tion in F̄ is asymmetric, the two classes are not equal, and
nor is one a subset of the other.

In the case where φa(x) is defined by two ReLU units,
F would be capable of representing nontrivial symmet-
ric functions. However, F̄ includes symmetric functions
which have > 2 non-differentiable points, whereas F does
not. So even when the original function class is capable
of representing nontrivial functions respecting the desired
symmetry, performing averaging over the group action can
still yield a richer class of functions.
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Proof of theorem 1

Suppose that we have a model such that

P (y|θ, x,M) ∝ exp(−`(Mθ(x), y))

, where ` is a convex loss function. Suppose that M̄θ =∑
g∈GMθ(gx)/|G|. Then P (y|x,M) ≤ P (y|x, M̄).

Proof. Simple application of Jensen’s inequality.

P (Y |X,M) =

∫
θ

P (Y |X, θ,M)dθ

=

∫
θ

Πx∈X exp(−`(Mθ(x), y))dθ

=

∫
θ

exp(−
∑
x∈X

`(Mθ(x), y)dθ

=

∫
θ

exp(−
∑

x∈X/G

∑
g

`(Mθ(gx), y))dθ

≤
∫
θ

exp(−
∑

x∈X/G

∑
g

`(M̄θ(gx), y))dθ

=

∫
θ

exp(−
∑
x∈X

`(M̄θ(x), y))dθ

=

∫
θ

Πx∈X exp(−`(M̄θ(x), y))dθ

= P (Y |X, M̄)

Proof of theorem 2

Let P (y|M̄θ, x) =
∑
g∈G P (y|Mθ, gx)/|G| then

P (Y |M̄θ, X) ≥ P (Y |Mθ, X)

Proof.∫
Πp(y|Mθ(x))dθ =

∫
ΠX/GΠg∈Gp(y|Mθ(gx))dθ

=

∫
ΠX/G

|G|
√

Πg∈Gp(Y |M, θ,X))|G|dθ

≤
∫

ΠX/G(
1

G

∑
p(y|M, θ, x))|G|dθ

=

∫
ΠX/Gp(y|M̄, θ, x)|G|dθ

=

∫
ΠXp(y|M̄, θ, x)dθ

Proof of lemma 2

Let F be a set of functions mapping spaces X to Y and let
G be a group acting on X . Let ρ and π be two distributions
on F such that ρ� π. We then have

KL(ρ||π) ≥ KL(ρ̄||π̄).

If ρ assigns nontrivial weight to a single element in each
class and π is invariant over the equivalence classes given
by R and these equivalence classes are of size M , then the
difference in the KL divergences can be computed exactly:

KL(ρ||π) = KL(ρ̄||π̄) + log(M)

Proof.

KL(ρ||π) =

∫
f

ρ(f) log(
ρ(f)

π(f)
)

=

∫
f̄∈F/R

∑
f∈R−1(f̄)

ρ(f) log(ρ(f)/π(f))

=

∫
ρ̄(f̄)

∑
ρ(f)/ρ̄(f̄) log(ρ(f)/π(f))

We can use the calculus of variations to show that
the optimal ρ′ for the above equation satisfying∑
f∈R−1(f̄) ρ

′(f) = ρ̄(f̄) is given by

ρ′(f) :=
ρ̄(f̄)

π̄(f̄)
π(f)

Further, KL(ρ||π) ≥ KL(ρ′||π) for all ρ 6= ρ′, so it re-
mains to show that KL(ρ′||π) ≥ KL(ρ̄||π̄), which is easy
as:

KL(ρ′||π) =

∫
f

ρ′(f) log(
ρ′(f)

π(f)
)df

=

∫
f

ρ′(f) log(
ρ̄(f̄)

π̄(f̄)
)df

=

∫
f̄

log(
ρ̄(f̄)

π̄(f̄)

∑
f∈R−1(f̄)

ρ′(f)df

= KL(ρ̄||π̄))

Finally in the setting where π is invariant and ρ assigns
nontrivial weight to a single element, we have:

KL(ρ||π) =

∫
f̄

∑
R−1(f̄)

ρ(f) log
ρ(f)

π(f)
df̄

=

∫
ρ(f) log

ρ̄(f̄)

π̄(f̄)/M
df

=

∫
ρ̄(f̄)(log

ρ̄

π̄
+ log(M))df̄

= KL(ρ̄||π̄) + log(M)
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A note on the assumptions of theorem 4

While the assumptions of theorem 4 may appear arbitrary,
they are motivated by practical approaches to generaliza-
tion bounds in neural networks. Many PAC-Bayes bounds
construct a Gibbs classifier from a deterministically trained
neural network by setting the weights to follow a normal
distribution with mean µ arrived at during training and
some variance σ2. Meanwhile, the prior on the weights
is typically set to be iid gaussian centered at zero. Because
one can obtain equivalence classes under certain group ac-
tions on the inputs by permuting the weights of the neural
network in a particular way, we get that the prior weight
(which is permutation invariant) assigned to any two net-
works which are in the same equivalence class under the
operator R will be equal. Meanwhile, the majority of the
mass of the posterior will be centered about the values ob-
tained during training, which are unlikely to exhibit per-
mutation invariance, and so only one element of the equiv-
alence class is likely to be assigned nontrivial density under
the posterior ρ.

Proof of theorem 4

By the observation of the previous theorem, the result fol-
lows immediately as

eu(ρ) = eu(ρ̄)− 1
n log(M)

and since ex is monotone, we have that

1

1− e−β
(1− eu(ρ)) ≥ 1

1− e−β
(1− eu(ρ̄))


